Biochimie 95 (2013) 43-50

Contents lists available at SciVerse ScienceDirect

Biochimie

journal homepage: www.elsevier.com/locate/biochi

Mini-review Emerging roles of secreted phospholipase A₂ enzymes: An update

Makoto Murakami^{a,*}, Gérard Lambeau^{b,**}

^a Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan ^b Institute of Molecular and Cellular Pharmacology, Centre National de la Recherche Scientifique and University of Nice Sophia Antipolis, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France

ARTICLE INFO

Article history: Received 21 June 2012 Accepted 11 September 2012 Available online 25 September 2012

Keywords: Phospholipase A₂ Lipid Arachidonic acid Atherosclerosis Inflammation

ABSTRACT

Phospholipase A_2 (PLA₂) enzymes catalyze the hydrolysis of the *sn*-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. More than one third of the mammalian PLA₂ enzymes belong to the secreted PLA₂ (sPLA₂) family, which consists of low molecular mass, Ca²⁺-requiring enzymes with a His–Asp catalytic dyad. Individual sPLA₂ enzymes exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting their distinct biological roles. The past decade has met a new era of the sPLA₂ research field toward deciphering their *in vivo* functions by developing several specific tools and methods. These include i) the production of transgenic and knockout mouse lines for several sPLA₂s, ii) the development of specific analytical tools including the production of large amounts of recombinant sPLA₂ proteins, and iii) applying mass spectrometry lipidomics to unveil their specific enzymatic properties occurring *in vivo*. It is now obvious that individual sPLA₂s are involved in diverse biological events through lipid mediator-dependent and -independent processes, act redundantly or non-redundantly in the context of physiology and pathophysiology, and may represent potential drug targets or novel bioactive molecules in certain situations. In this review, we will highlight the newest understanding of the biological roles of sPLA₂s in the past few years.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Mouse or human genomes encode genes for 11 to 12 secreted phospholipase A₂ (sPLA₂) enzymes (IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA, XIIB and otoconin-90), which are subdivided into a conventional group (I, II, V, X and otoconin-90) and two atypical groups (III and XII) [1]. sPLA₂s have long been thought to act in a rather similar manner and to collectively participate in lipid digestion, host defense, inflammation and atherosclerosis. Recent studies using gene-manipulated mice for conventional (group IB, IIA, V and X) and atypical (III and XIIB) sPLA₂s have revealed their distinct contributions to these processes by degrading foreign phospholipids in bacterial membranes and foods, by modifying extracellular non-cellular lipid components (lipoproteins, lung surfactant,

** Corresponding author. Tel.: +33 (0) 4 93 95 77 33; fax: +33 (0) 4 93 95 77 08. *E-mail addresses*: murakami-mk@igakuken.or.jp (M. Murakami), lambeau@ ipmc.cnrs.fr (G. Lambeau). microparticles, etc), by producing lipid mediators from cellular membranes, or by unknown mechanism. The current understanding of the *in vivo* physiological and pathophysiological functions of sPLA₂s was summarized in our previous *Biochimie* review in 2010 [2] as well as in other recent reviews [3–5]. After publishing this review, significant advances in the sPLA₂ research field have been made, including additional insights into the pathophysiological roles of conventional sPLA₂s, but also some novel yet controversial actions for atypical sPLA₂s. Here, we make a brief overview to update our understanding of the biological functions of mammalian sPLA₂s *in vivo*. Phenotypes of sPLA₂ gene-manipulated mice are summarized in Table 1.

2. sPLA₂s in innate and acquired immunity

Out of the different sPLA₂ isoforms, group V and X sPLA₂s have been shown to participate in the pathology of Th2-based asthma, since gene targeting of either of these two sPLA₂s in mice results in the amelioration of asthma models [6,7]. The attenuated asthmatic response in $Pla2g10^{-/-}$ mice is fully restored by knock-in of human group X sPLA₂, and treatment of the knock-in mice with a specific inhibitor of human group X sPLA₂ suppresses the airway symptoms [8]. As a possible mechanism, group X sPLA₂ is released from airway

Abbreviations: DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; DRG, dorsal root ganglion; GI, gastrointestinal; LDL, low-density lipoprotein; LXR, liver X receptor; LPS, lipopolysaccharide; LPC, lysophosphatidylcholine; LPCAT, LPCA, cayl-transferase 1; PC, phosphatidylcholine; PLA₂, phospholipase A₂; PUFA, poly-unsaturated fatty acid; sPLA₂, secreted PLA₂; Tg, transgenic; VLDL, very low-density lipoprotein; WT, wild-type.

^{*} Corresponding author. Tel.: +81 3 5316 3228; fax: +81 3 5316 3125.

^{0300-9084/\$ –} see front matter @ 2012 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.biochi.2012.09.007

Table 1

Phenotype of sPLA₂ gene-manipulated mice (appropriate references can be found in the main text).

sPLA ₂ collection	sPLA ₂	Gene	Phenotype
	subtype	manipulation	
Conventional	IB	Knockout	Reduced obesity, hepatic
sPLA2s			steatosis and insulin resistance
			due to decreased phospholipid digestion in the GI tract
	IIA	Natural	Increased colon cancer
		knockout	
		Knockout	Reduced arthritis
		Transgenic	Alopecia and epidermal
			hyperplasia
			Increased skin cancer ^a Increased atherosclerosis
			Protection from bacterial
			infection due to bacterial
			killing
	V	Transgenic	Neonatal death due to
			respiratory failure resulting
			from destruction of lung
		Knockout	surfactant Reduced zymosan-induced
		KIIOCKOUL	peritonitis
			Defective phagocytotic
			clearance of fungi
			Reduced asthma
			Impaired Th2 response ^b Reduced LPS-induced air
			pouch inflammation
			Reduced bacteria-induced
			airway inflammation
			Reduced ischemia/
			reperfusion-induced
			myocardial injury Reduced atherosclerosis ^c
			Exacerbated arthritis
	Х	Transgenic	Pulmonary inflammation ^d
	Λ	mansgeme	Alopecia and epidermal
			hyperplasia
			Increased peripheral pain
			nociception
		Knockout	Reduced asthma
			Reduced ischemia/reperfusion- induced myocardial injury
			Reduced aneurysm
			Accelerated atherosclerosis ^e
			Reduced phospholipid
			digestion in the GI tract
			in association with
			reduced adiposity Abnormal hair follicles
			Reduced peripheral pain
			nociception
			Increased adiposity due to
			accelerated lipogenesis
			Increased adrenal
			corticosteroidogenesis Reduced macrophage
			cholesterol efflux
			Reduced LPS-induced cytokine
Atupical sPLA			production in macrophages
			Reduced capacitation of spermatozoa
	ш	Transgoria	
Atypical sPLA ₂ (group III	III	Transgenic	Increased atherosclerosis Systemic inflammation
collection)		Knockout	Impaired sperm maturation
		lineenout	and infertility
Atypical sPLA ₂ s	XIIB	Knockout	Steatohepatitis due to impaired
(group XII			hepatic secretion of VLDL
collection)			1

^a Skin-specific.

^b Adoptive transfer of dendritic cells.

^c Adoptive transfer of bone marrow cells.

^d Macrophage-specific.

^e Bone marrow transfer into *Ldlr^{-/-}* mice.

epithelial cells and may act on eosinophils in a paracrine manner to produce lysophosphatidylcholine (LPC), which in turn triggers Ca²⁺ influx leading to activation of cytosolic PLA₂ α and thereby production of cysteinyl leukotrienes [9]. The mechanism for activation of group X sPLA₂ from its proenzyme form has not been elucidated in the lung tissue, but recent *in vitro* studies have shown that the proenzyme is converted during secretion by a furin-like proprotein convertase [10]. Of the three sPLA₂s (IIA, V and X) readily expressed in human lungs, group IIA and X enzymes are the major sPLA₂s that are increased in the bronchoalveolar lavage fluid of patients with asthma, where the levels of group X, but not group IIA, sPLA₂ appear to correlate with lung functions, neutrophil recruitment, and prostaglandin levels [11]. These results point to pulmonary group X sPLA₂ as a novel therapeutic target in asthma.

The action of group V sPLA₂ in asthma and other respiratory diseases seems to be more complex. The facts that group V sPLA₂ is induced in bronchial epithelial cells in antigen-challenged wildtype (WT) mice and that the intra-tracheal application of antigroup V sPLA₂ antibody ameliorates airway inflammation suggest a pro-inflammatory action of this enzyme in the airway [7]. Excessive hydrolysis of pulmonary surfactant by group V sPLA₂ perturbs the respiratory function in *Pla2g5*-transgenic (Tg) mice [12]. Insights into the surfactant hydrolysis by several sPLA₂s in acute respiratory distress syndrome have been documented in previous reviews [1,2,4]. Group V sPLA₂ is also localized in phagosomal membranes of macrophages [13]. Capture and processing of antigens by antigen-presenting cells are significantly attenuated in $Pla2g5^{-/-}$ mice, and accordingly. $Pla2g5^{-/-}$ mice display a reduction of Th2 polarization, thereby resisting subsequent propagation of asthmatic inflammation [14]. Thus, group V sPLA₂ appears to function on one hand in airway-resident cells to facilitate airway inflammation possibly via surfactant degradation and on another hand in antigen-presenting cells to regulate antigen processing and thereby the Th2 immune response. Deficiency of group V sPLA₂ reduces lipopolysaccharide (LPS)-induced leukocyte recruitment in an air pouch model [15]. Likewise, $Pla2g5^{-/-}$ mice are unable to properly eliminate Escherichia coli injected into the pulmonary tract likely because of the reduced recruitment of neutrophils, thereby suffering from severe respiratory acidosis and hypothermia [16]. As in the asthma model, group V sPLA₂ expressed in both myeloid cells and lung-resident non-myeloid cells participates in the innate immune response to pulmonary infection. Furthermore, Pla2g5^{-/-} mice show reduced clearance of Candida albicans leading to severe systemic candidiasis [17] and that of immune complex leading to exaggerated inflammatory arthritis [18], revealing both antimicrobial and anti-inflammatory roles of group V sPLA₂ in these situations. Interestingly, treating mice with recombinant group V sPLA₂ has a protective effect against arthritis, supporting the concept that certain sPLA₂s may be bioactive and therapeutic molecules that should not be inhibited, but rather stimulated in specific inflammatory conditions.

Elucidating the functions of group IIA sPLA₂ in lung inflammation and more generally in innate and acquired immunity has largely been hampered by the marked differences in tissue distribution of this sPLA₂ between the mouse species and other species including rat and human among others. More specifically, it is believed that group IIA sPLA₂ plays an *in vivo* role in innate host defense against different strains of bacteria by directly hydrolyzing bacterial membranes in the lung of rat, guinea pig or human, but not mouse, where this sPLA₂ has never been detected [19]. Interestingly, different bacterial strains have developed counteracting mechanisms to circumvent the potent antibacterial activity of group IIA sPLA₂ [20,21]. Studying the *in vivo* function of group IIA sPLA₂ in host defense and inflammatory conditions has also been limited by the fact that inbred C57BL/6 and 129 mouse strains are Download English Version:

https://daneshyari.com/en/article/10803685

Download Persian Version:

https://daneshyari.com/article/10803685

Daneshyari.com