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Background: Acute lymphoblastic leukaemia (ALL) has posed challenges to the clinician due to variable pa-
tients' responses and late diagnosis. With the advance in metabolomics, early detection and personalised treat-
ment are possible.

Methods:Metabolomic profile of 21 ALL patients treated with 6-mercaptopurine and 10 healthy volunteers
were analysed using liquid chromatography/mass spectrometry quadrupole-time of flight (LC/MS Q-TOF). Prin-
cipal components analysis (PCA), recursive analysis, clustering and pathway analysis were performed using
MassHunter Qualitative and Mass Profiler Professional (MPP) software.

Results: Several metabolites were found to be expressed differently in patients treated with 6-
mercaptopurine. Interestingly, 13 metabolites were significantly differently expressed [p-value b0.01 (unpaired
t-test) and 2-fold change] in 19% of the patients who had relapses in their treatment. Down-regulated metabo-
lites in relapsed patients were 1-tetrahexanoyl-2-(8-[3]-ladderane-octanyl)-sn-GPEtn, GPEtn (18:1(9Z)/0:0),
GPCho(O-6:0/O-6:0), GPCho(O-2:0/O-1:0), methyl 8-[2-(2-formyl-vinyl)-3-hydroxy-5-oxo-cyclopentyl]-
octanoate and plasma free amino acids (PFAA). Characterizing the subjects according to their ITPA 94C N A geno-
types reveal differential expression of metabolites.

Conclusions: Our research contributes to identification of metabolites that could be used to monitor disease
progress of patients and allow targeted therapy for ALL at different stages, especially in preventing complication
of relapse.

© 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

Introduction

Acute lymphoblastic leukaemia is a malignant proliferation of lym-
phoid cells that affects children and adults. It is more prevalent among
those age between 2 and 5 years. However, the exact pathogenetic fac-
tors that lead to this disorder are unclear. It has been reported that only
few cases (b5%) are associated with inherited, predisposing genetic
syndromes [1]. With the advances of new molecular technologies, un-
derstanding the pathophysiological mechanisms of acute lymphoblastic

leukaemia has increased. Concerted effort from the researchers in
unraveling the mechanistic events that cause acute lymphoblastic leu-
kaemia and to identify better treatment regimenswill enhance the clin-
ical outcomes, and enhance the generally low cure rates. This will lead
to personalized treatment that revolutionize management of ALL
patients.

Metabolism of living systems could be influenced by endogenous
factors such as genetics, as well as exogenous factors including diet, en-
vironment andmedication. However, the identities, concentrations and
fluxes of these small metabolites are controlled by synergy of gene and
protein expression in response to the environment [2,3]. Moreover, per-
turbation in the metabolism of patients with different disease states is
shown as different metabolic profiles that could be useful signatures
in monitoring treatment outcomes and disease progress. Several
metabolic signatures have been reported for motor neuron diseases,
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cardiovascular diseases, type 2 diabetes, liver cancer, ovarian cancer and
breast cancer [2]. Solid tumours can cause metabolic alterations with
high rate of glycolysis and increase glucose consumption [4]. Similarly,
Boag et al. (2006) reported that there was alteration of the glucose me-
tabolism in children suffering from acute leukaemia. They observed
higher rates of glycolysis and lactatewhich strongly suggest that chang-
es in the metabolic profile of ALL are similar to that of solid tumours.
However, reasons for the altered metabolism in leukaemia cells are
still unknown. Therefore, this study provides further understanding
on the differential expression ofmetabolites in ALL patients usingmeta-
bolomics approach.We also attempted to study the impact of polymor-
phism of inosine triphosphatase enzymes on the differential metabolite
profiles of patients.

Materials and methods

Subjects

The study protocol was approved by local Research Ethics Commit-
tee to investigate factors that affect patient's disease progression and
therapy outcomes using both genomic and metabolomics approaches.
Written informed consents were obtained from all subjects. Venous
blood (3 mL) was obtained from 21 patients who were diagnosed
with acute lymphoblastic leukaemia (ALL) and 10 age-matched healthy
volunteers.

Clinical data and genotyping

Information about the occurrence of adverse events and interrup-
tions of chemotherapy in all patients were obtained from medical re-
cords. All patients' samples were screened to determine their ITPA
94C N A genotypes using a previously published method [5].

Sample processing for metabolomics

Extractionmethodwasmodified from Sana et al. [6] for the process-
ing of whole blood. Firstly, 250 μl thawed blood were added with 75 μl
ice-cold deionized water (pH 7.0) and vortexed thoroughly. The tube
was plunged into liquid nitrogen for 1min then immediately immersed
into a water bath at 37 °C and left for 1 min. Next, 300 μl of −20 °C
methanol was added to the mixture and vortexed. Two hundred and
twenty five (225) μl of ice-cold chloroform was added to the mixture
and the tube was vortexed. Then, 75 μl of ice-cold sterile water
(pH 7.0) was added followed by vortexing. Later, the tube was centri-
fuged at 10,000 ×g for 1 min at 4 °C before overnight incubation
(about 16 h) at−20 °C.

After incubation, the supernatant was transferred to another tube.
An equal amount of ice cold acetonitrile (ACN)was added and followed
by incubation for 30 min at 4 °C. After that, the tube was centrifuged at
10,000 ×g at 4 °C for 15 min. The supernatant was removed to a fresh
tube and dried under vacuum. The samples were then reconstituted
with 50 μl of 1% formic acid and ACN at a ratio of 95:5 prior to LC/MS
analysis. In order to track the uniformity of each extraction, an aliquot
from the pooled blood were extracted along with the samples. This
serves as a control for the extraction step as any aberration in the profile
of the pooled blood indicates an error in the extraction process.

LC/MS Q-TOF analysis for metabolomics

A 1200 Rapid Resolution system (Agilent Technologies, CA, USA)
complete with a binary pump and degasser, well-plate autosampler
with thermostat, temperature controlled column compartment and an
Agilent 6520 Q-TOF mass spectrometer equipped with an ESI source
was used to analyse the samples. Column Zorbax Eclipse Plus C18
(1.8 μm particle size, 2.1 × 100 mm column dimension) was used for
chromatographic separation and maintained at 40 °C during the run.

Samples were run in positive mode. LC parameters: solvent A was
0.1% formic acid in water and solvent B was 0.1% formic acid in ACN.
The flow rate was 0.25 mL/min and the injection volumewas 2 μl. A lin-
ear gradientwas developed over 36min from 5% to 95% ofmobile phase
(B). Total run time was 48 min for each analysis. ESI source settings
were: V Cap 4000 V, skimmer 65 V and fragmentor 125 V. The nebulizer
was set at 45 psig and the nitrogen drying gas was set at a flow rate of
12 L/min. Drying gas temperature was maintained at 350 ºC. Data was
acquired at a rate of 2.5 spectra/s with a stored mass range of m/z
50–1000. Autocalibration was performed before each batch of analysis
and reference mass correction was enabled throughout the run. The
mass spectrometer was tuned to allow detection of compounds at accu-
racy of± 2 ppmbefore the analysis. Two referencemasses (121.050873
and 922.009798) were selected for correction of low and high masses.

Data processing
Datawere collected using AgilentMassHunterWorkstation Data Ac-

quisition software and processed by Agilent MassHunter Qualitative
Analysis software (Agilent Technologies, CA, USA). These steps include
molecular feature extraction, background subtraction, datafiltering, sta-
tistical analysis by ANOVA and PCA, followed by database search and
alignment. Compound exchange format file (.CEF) was created for
each sample and further analysed using Mass Profile Professional
(MPP) (Agilent Technologies, CA, USA). Identification of endogenous
and exogenousmetabolites was done by usingmetabolite identification
software, METLIN Personal Metabolite Database and Mass Profiler Pro-
fessional (MPP) (Agilent Technologies, Santa Clara, CA, USA).

Data analysis
Data mining was done using the Molecular Feature Extractor (MFE)

algorithm in theMassHunter workstation software. Noise was removed
by using absolute height parameter which was set at 200. All entities
that presented with less than this abundance were considered as
noise. The settings were applied for data processing method and used
to process all generated data files in a batch mode.

The first filter (frequency analysis) determined the compounds
(entities) presented at 100% of the time in at least one studied group.
The second filter of frequency selected entities that present in at least
50% of samples. Filtering by Analysis of Variance (ANOVA) was the
next step in selecting entities that are of significantly different of 2 ex-
perimental groups. In order to identify metabolites with differential dif-
ferences in abundance between the experimental groups, fold change of
2 and above was used to eliminate possible discriminating compounds.

The following step was data recursion which permits the re-
examination of data to ensure that each entity is real. The software au-
tomatically re-extracted the final group of metabolites from the data to
generate extracted ion chromatograms (EICs). To eliminate false posi-
tive and false negative, peaks inspection of the resulted EICs was done.
The confirmed metabolites then were statistically analysed.

Statistical analysis and visualization
Statistical analysis and visualization of metabolite profiles were

performed using MPP software (Agilent Technologies, Santa Clara,
CA, USA). Un-paired t-test and Analysis of Variance ANOVA with
Benjamini-Hochberg multiples testing correction were used to deter-
mine significant differences in the abundance of compounds between
two or more groups respectively. Segregation of patients was done
according to several parameters that include: (1) Healthy controls
versus patients (2) Relapsed patients versus non-relapsed patients
and (3) ITPA94C N A genotypes in patients.

Results

Twenty one (21) ALL patients (mean age ± SD; 13.4 ± 4.09 years
old) were recruited; nine of them were boys. The medical history re-
corded six cases of hepatotoxicity and four cases of relapse among the
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