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The ongoing debate about methods for fitting the two-parameter allometric equation y = axb to bivariate
data seemed to be resolved recently when three groups of investigators independently reported that statis-
tical models fitted by the traditional allometric method (i.e., by back-transforming a linear model fitted to
log–log transformations) typically are superior to models fitted by standard nonlinear regression. However,
the narrow focus for the statistical analyses in these investigations compromised the most important of the
ensuing conclusions. All the investigations focused on two-parameter power functions and excluded from
consideration other simple functions that might better describe pattern in the data; and all relied on Akaike's
Information Criterion instead of graphical validation to identify the better statistical model. My re-analysis of
data from one of the studies (BMR vs. body mass in mustelid carnivores) revealed (1) that the best descriptor
for pattern in the dataset is a straight line and not a two-parameter power function; (2) that a model with
additive, normal, heteroscedastic error is superior to one with multiplicative, lognormal, heteroscedastic
error; and (3) that Akaike's Information Criterion is not a generally reliable metric for discriminating between
models fitted to different distributions. These findings have apparent implications for interpreting the out-
comes of all three of the aforementioned studies. Future investigations of allometric variation should adopt
a more holistic approach to analysis and not be wedded to the traditional allometric method.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Three recent investigations of allometric variation in both plants and
animals doubtless caught the attention of many biologists because the
studies seemed, at first blush, to resolve an ongoing debate about
methods for fitting simple power functions to bivariate data (Mascaro
et al., 2011; Xiao et al., 2011; Ballantyne, 2013). The exponent in the al-
lometric equation may be affected profoundly by the method used to
fit the statistical model (e.g., Kerkhoff and Enquist, 2009; Packard,
2009), so the debate and its apparent resolution arematters of consider-
able importance to all those who are involved with describing and
interpreting the scaling of biological variables with body size.

At the heart of the three studieswas a comparison of two-parameter
power functions fitted by standard nonlinear regression and by the tra-
ditional allometric method. A model fitted directly to untransformed
data by standard nonlinear regression is assumed to have additive, nor-
mal, homoscedastic error (Kutner et al., 2004), and has the form

yi ¼ axi
b þ εi εi eN 0;σ2

� �
: ð1Þ

Line-fitting by traditional allometry, however, requires that a straight
line first be fitted to logarithmic transformations of the data and that
the resulting homoscedastic model,

log yið Þ ¼ log að Þ þ b log xið Þ þ εi εi eN 0;σ2
� �

; ð2Þ

then be back-transformed to form a new model with multiplicative,
log-normal, heteroscedastic error on the original scale,

yi ¼ axi
b � exp εið Þ: ð3Þ

The traditional method emerged early in the 20th century as a means
for fitting a simple power function to observations following a curvilin-
ear path in bivariate display (see Packard, 2012a), but emphasis has
been placed more recently on the heteroscedastic error in the final
model (e.g., Kerkhoff and Enquist, 2009; White et al., 2012). The tradi-
tional allometric method currently is in widespread use despite numer-
ous expressions of concern over the years regarding reliability of the
procedure (e.g., Thompson, 1943; Zar, 1968; Glass, 1969; Smith, 1984;
Verwust, 1991; Packard, 2011a,b).

Akaike's Information Criterion (AIC), which was used in the three
studies to assess goodness of fit of the alternative models, usually was
lower for models fitted by traditional allometry than for those fitted by
standard nonlinear regression. This finding led the authors to conclude
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thatmodelsfitted by traditional allometry are generally superior to those
fitted by standard nonlinear regression and, therefore, that the former
typically provide gooddescriptions for pattern in thedata. Otherworkers
engaged in research on scalingwere thereby encouraged to use the tradi-
tional approach to line-fitting because of its apparent reliability and sim-
plicity. However, these putative validations of the traditional method are
misleading, because none of the studies went far enough either to clarify
the issues fully or to demonstrate the general utility of the traditional
method. Unresolved issues concern (1) the adequacy of fitted models
for describing patterns of variation in bivariate data and (2) how best to
model random variation (residuals) in the response variable.

2. Methods

For purposes of illustration, I took data for basal metabolic rate
(BMR) and body mass of 13 species of mustelid carnivores from
Table 1 in Muñoz-Garcia and Williams (2005) and submitted them to
new analyses (Fig. 1A). Although the dataset is small (and consequently
less than ideal for use in a case-study like this), it is the same dataset
thatwas examined byBallantyne (2013) in themost recent of the afore-
mentioned inquiries. Inasmuch as all three of the investigations
followed the samebasic protocol,my re-analysis provides newperspec-
tive on analytical procedures used in all the studies.

I took amore holistic approach thanwas followed by Ballantyne (and
byMascaro et al. and Xiao et al.) in that a variety ofmodelswith different
forms for error were fitted to the data. First, a two-parameter power
function with multiplicative, lognormal, heteroscedastic error [3] was
“fitted” to arithmetic data by back-transforming the model for a straight
line fitted to logarithmic transformations [2]. Next, I fitted models for
straight lines (with and without intercepts) and for two- and three-
parameter power functions directly to untransformed data by themeth-
od of least squares. The several least-squares models were of two types:
one set of models assumed additive, normal, homoscedastic error (as in
linear and nonlinear regression in standard statistical software) whereas
the other set assumed additive, normal, heteroscedastic error. The func-
tional form for variance in least-squares models with heteroscedastic
error was

var εið Þ ¼ σ2 � f xi;βð Þð Þ2θ ð4Þ

where βwas a vector of parameters in a function, f, relating BMR (y) to
mass (x) and θ was an additional parameter in the fitted model
(Pinheiro and Bates, 2000, p. 210 ff; Ritz and Streibig, 2008, p. 74 ff;
Zuur et al., 2009, p. 78 ff). Thus, models with normal, heteroscedastic
error were of the general form

yi ¼ f xi;βð Þ þ εi εi eN 0; σ2 � f xi;βð Þð Þ2θ
� �� �

ð5Þ

with variance modeled as a power of the mean for y. This model re-
duces to the standard linear or nonlinear (homoscedastic) model
[1] when θ equals zero, because functional form for variance then be-
comes σ2. Mascaro et al. (2011) also fittedmodels with additive, nor-
mal, heteroscedastic error, but they considered only two-parameter
power functions. All the analyses were run using the nlrwr package
in R 2.13.2 (Ritz and Streibig, 2008).

I also used AIC to compare the different candidate models (Burnham
andAnderson, 2002). AIC for themodel estimated by the traditional allo-
metricmethodwas computed using R-codewrittenby JackWeiss at Uni-
versity of North Carolina (http://www.unc.edu/courses/2010spring/
ecol/562/001/docs/lectures/lecture6.htm#lecture6). AICs were not ad-
justed for sample size because of doubts about the value of such correc-
tions (Richards, 2005). The lowest AIC identifies the candidate model
that conveys the most information about the relationship between pre-
dictor and response, and provides a reference for assessing the goodness

Table 1
Comparison of statistical models fitted to untransformed data for metabolic rate vs.
body mass for 13 species of mustelid carnivores.

Predictive equation AIC ΔAIC

Linear model w/normal, homoscedastic error, no intercept:
ŷ = 0.279 x

213.3 36.1

Linear model w/normal, homoscedastic error, intercept:
ŷ = −235.4 + 0.293 x

214.4 37.2

2-Parameter power w/normal, homoscedastic error:
ŷ = 0.00253 x1.470

203.9 26.7

3-Parameter power w/normal, homoscedastic error:
ŷ = 224.2 + 0.000769 x1.584

204.4 27.2

Back-transformed OLS w/multiplicative,
log-normal, heteroscedastic error:
ŷ = 2.292 x0.736

183.0 5.8

Linear model w/normal, heteroscedastic error, no intercept:
ŷ = 0.255 x

190.2 13.0

Linear model w/normal, heteroscedastic error, intercept:
ŷ = 75.2 + 0.218 x

177.2 0

2-Parameter power w/normal, heteroscedastic error:
ŷ = 4.932 x0.628

186.0 8.8

3-Parameter power w/normal, heteroscedastic error:
ŷ = 73.9 + 0.239 x0.989

179.2 2.0

ΔAICs are based on the fit of a full linear model with normal, heteroscedastic error. AICs
reported by Ballantyne (2013) are in substantial agreement with those reported here
despite his making an adjustment for sample size. Note the reductions in AIC when
non-zero intercepts are incorporated into models with normal, heteroscedastic error.

Fig. 1. (A) Data for basal metabolic rate (BMR) and bodymass of 13 species ofmustelid car-
nivores are displayed in a simple bivariate plot to show the overall distribution for the obser-
vations without introducing the visual distraction of several regression lines. Scatter in the
observations appears to increase with body size, thereby pointing to heteroscedasticity in
the response variable. (B) The solid line is the mean function for the straight line with
non-zero intercept and additive, normal, heteroscedastic error. The short-dashed line with
upward curvature is themean function for a 2-parameter power equation fitted by standard
nonlinear regression (i.e., additive, normal, homoscedastic error). The dotted line with
downward curvature is the 2-parameter function with additive, normal, heteroscedastic
error. The long-dashed line is the function estimated by the traditional allometric method
(i.e., multiplicative, lognormal, heteroscedastic error).
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