
COSTBI-1162; NO. OF PAGES 8

Please cite this article in press as: Schreiber G, Fleishman SJ. Computational design of protein–protein interactions, Curr Opin Struct Biol (2013), http://dx.doi.org/10.1016/j.sbi.2013.08.003

Computational design of protein–protein interactions
Gideon Schreiber and Sarel J Fleishman

A long-term aim of computational design is to generate specific

protein–protein interactions at desired affinity, specificity, and

kinetics. The past three years have seen the first reports on

atomically accurate de novo interactions. These were based on

advances in design algorithms and the ability to harness high-

throughput experimental characterization of design variants to

optimize binding. Current state-of-the-art in computational

design lacks precision, and therefore requires intensive

experimental optimization to achieve parity with natural

binders. Recent successes (and failures) point the way to future

progress in design methodology that would enable routine and

robust design of binders and inhibitors, while also shedding

light on the essential features of biomolecular recognition.
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Two fundamental features of natural protein interactions

are specificity and affinity. Affinities of protein–protein

interaction in biological systems span 10-orders of magni-

tude, from high mM to fM, with many interactions being

exquisitely specific at their native concentrations and

environments [1]. They form homo-complexes or het-

ero-complexes with one or many partners. Binding affi-

nities may be influenced by temperature, pH, ionic

strength or posttranslational modifications. The site of

interaction can be anywhere on the surface, both in struc-

tured and unstructured regions; however, a tendency to

interact at specific locations has been observed [1]. Finally,

binding affinity is a function of the difference between the

overall free energy of the unbound relative to the bound

state of the proteins. This includes direct contributions

(bonds between the two proteins) as well as changes in the

internal energy of the proteins, the water structure, entropy

and other factors. Partly because of these complicating

factors the design of novel binding sites lagged behind the

design of new folds [2] or enzymatic functions [3,4]. In this

review we survey recent advances in computational design

of protein–protein interactions, from engineering of altered

affinity to de novo design of interfaces.

Predicting mutational effects
Predicting the energetic outcome of a set of point

mutations provides a clear and unbiased benchmark for

energy functions. However, constructing such a bench-

mark is complicated as the structure of the mutated

protein is usually unknown and different experimental

methods may lead to wide disparities in reported binding

energies [5]. The ability to accurately predict the effects

of mutations is still a formidable task [6,7]. Many new

studies were presented in recent years to address this

issue, both for predicting protein stability and protein–
protein binding affinity. One of the potential problems is

the sparse data available to calibrate energy functions.

Moreover, the choice of mutations tested is biased by

experimentalists’ hypotheses, and usually does not pro-

vide a good coverage of the potential energy surface. In

recent years, deep sequencing has become relatively

cheap and accessible, providing for the first time com-

plete data on all point mutations at the binding surface

extracted from a natural pool of binders, or following

random or focused mutagenesis and in vitro selection

for binding. This allows for un-biased mapping of muta-

tional effects on binding and stability. For example, deep

sequencing of selected antibody clones against VEGF

provided the sequences of higher-affinity variants that

were used to calculate the probability of sequence space

constituting the interface (using machine learning) [8].

The assumption is that a specific amino-acid preference is

directly related to its contribution to the free energy of the

selected trait. Accordingly, more favorable solutions will

be selected and their propensity would increase in the

selected population relative to the unselected, or naı̈ve,

population [9��]. Similarly, the availability of over 50

thousand HIV-1 protease sequences isolated from

patients was used to explore the mutational tolerance

of this protein and the space of stability versus function

tradeoff that viruses explore during the accumulation of

resistance mutations [10�].

Prediction and design of association kinetics
Binding affinity factors the rate of association (kon) and

dissociation (koff). The dissociation rate measures the

stability of the complex after it has formed (half-life), and

is independent of protein concentration. The observed

rate of association is a product of the protein concen-

tration and the physical association-rate constant. The

latter is mostly affected by electrostatic forces that can be

manipulated by mutations [11]. Indeed, electrostatic
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design of ‘on-rates’ through optimization of the electro-

static energy of interaction at the bound state by mutat-

ing amino-acids surrounding the physical interface but

not making direct contact with the partner protein was an

early success in protein-interface design [12]. Further

developments in ‘on-rate’ predictions have successfully

simulated the diffusion-driven binding rate. Combining

these two factors reproduced observed rates of associ-

ation for different cytokine-receptor interactions and

mutants of these complexes [13]. The authors pointed

out a correlation between the diverse (>1000-fold)

association rate constants of the different pairs and the

in vivo cytokine circulating concentrations, suggesting

that the observed cytokine-receptor binding rates are

close to the limits set by the half-lives of the receptors.

These kon calculations were successfully reproduced also

in crowded environments, mimicking the intracellular

milieu [14].

Two additional factors have to be taken into account

when designing binding rates. One, is the need for

conformational selection before binding [15], and second

is that forming hydrogen bonds between buried donors/

acceptors requires dehydration/rehydration, which

involves an energetically penalized transition state. This

results in a kinetic trap that may slow or weaken binding

[16]. Together, these data point toward a reaction-limit-

ing component in association, which has to be taken into

account when designing binding sites.

Changing the electrostatic properties of the surface has

the potential to stabilize proteins. Interestingly, using

Rosetta to optimize the charge distribution at the surface

of a single-chain antibody resulted, in addition to

increased stability, also in a 30-fold enhancement in

binding affinity, which apparently is not related to non-

specific electrostatic attraction [17].

Designing affinity and specificity
Affinity and specificity of interactions are two sides of the

same coin. To design binding while ignoring specificity

can be achieved by making flexible hydrophobic surfaces

that would bind one another or other similar hydrophobic

surfaces. Imposing a mixture of bond types and shape

complementarity between rugged surfaces encodes bind-

ing specificity. Using a structure-based energy score

accounting for electrostatic forces and buried surface area

of a residue and its conservation in known Regulators of G

protein Signaling (RGS) proteins, Kosloff et al. [18�]
identified a set of peripheral residues that encode inter-

action specificity toward G proteins. Mutation of those

resulted in variations of RGS specificity toward G

proteins. In another study the signaling cascade of the

GTPase Cdc42 and its activator, Intersectin, was rewired.

The altered interface designed between the two proteins

resulted in GTPase activation exclusively by its engin-

eered cognate partner, both in vitro and in mammalian

cells [19]. Another example of applying predictive tools to

alter biological activity through interface engineering was

demonstrated for the binding of pro-apoptotic BH3 (Bcl-2

homology 3) proteins to Bcl-2 receptor proteins. BH3

promotes cell death by docking an a-helix into a hydro-

phobic groove on the surface of one or more of five pro-

survival Bcl2-receptors. Mutations that were predicted to

decrease binding resulted in increased apoptosis [20]. A

different approach using peptide SPOT arrays and deep

sequencing data from yeast display screening to deter-

mine the BH3 sequence space that binds to the Bcl-2

receptor proteins was undertaken by DeBartolo et al. [21].

The data were used to calibrate two algorithms (SPOT

and DEEP) that predict binding affinity and specificity

against five human Bcl-2 receptors. The experimental

data were also used to evaluate a more general prediction

algorithm, STATIUM, which is solely based on summing

up the pairwise interactions within a given interface

(scored according to their occurrence within a large data-

base of protein structures). All three algorithms distin-

guished binders from non-binders, with STATIUM

performing as well as the other two, suggesting that

system specific data are not necessary in this case. On

the same experimental system, Rosetta was used to

design a constrained library, from which a variant with

1000-fold improved binding specificity for the BH3

region of Bad over the BH3 region of Bim was selected.

Although negative design was applied only against the

BH3 region of Bim, the best redesigned protein was

specific against binding to other BH3 motifs [22�]. The

design framework demonstrates an efficient route to

design new Bcl-2 family complexes.

In a study aimed to achieve higher affinity of binding of

MHC Class I Polypeptide-Related Sequence A (MICA) to

the homodimeric immunoreceptor NKG2D the fixed-

backbone RosettaDesign protocol was used to identify

appropriate residues for mutation. The best-performing

mutations were combined, resulting in a measured 50-fold

increase in binding affinity [23]. Many of the multiple

mutants were subadditive compared to the sum of the

single mutants, suggesting cooperativity in the interface. In

another study, Hawse et al. [24] aimed to explore whether

T-cell signaling is dynamically controlled. As the binding

between the DMF5 T-cell receptor (TCR) with a peptide

presented by HLA-A2 was too weak to be detected by mass

spectrometry, they used Rosetta to identify mutations that

enhance binding affinity. Ten of the highest scoring

mutants were experimentally analyzed, with two of them

leading to enhanced binding from 11 mM to 40 nM.

Rosetta, in combination with a range of experimental

methods, was also used successfully to explain the mol-

ecular basis of a million-fold affinity maturation between

T-cell receptor and bacterial antigen [25].

A method to introduce a binding site between two non-

interacting proteins is to graft it from a different protein
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