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Abstract:  To investigate the complex dynamics for airlines’ price competition, this paper proposes a price competition model of 
airlines with differentiation strategy and with the theory of bifurcation of dynamical systems. The existence and stability of 
equilibrium points of the model are discussed according to dynamic stability criteria. The complex dynamics of this model in 
different market parameters are shown though numerical simulation. The simulation results show that the speed of price adjustment 
has a significant impact on the stability of the model, while the speed of price adjustment is larger than critical value, and the 
phenomenon of bifurcation and chaos will appear on the dynamic system. Compared with the Nash equilibrium profits, all airlines’ 
profits are decreased obviously when chaos is occurred. Differentiation has an important impact on airlines’ price and profits, it’s 
helpful to have more competition advantage that to keep and strengthen the differentiation advantage against the competitors. 
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1  Introduction 

For a long time, airlines in China have heavily relied on 
travel agents to sell their tickets, resulting in the control of air 
ticket prices falling behind the price loosening mechanism. 
Due to the lack of traffic right allocation standards, airlines in 
China have to adopt price strategies to compete with other 
transportation modes in order to increase their market share. 
Consequently, price wars always lead to certain chaos in the 
market and some major losses for the airlines themselves[1]. 
The air transport market in China is dominated by a few large 
airlines such as Air China, China Southern Airlines, and 
Eastern Airlines, which is a typical monopoly phenomenon. 
Under this situation, the price of one airline will inevitably 
influence the ticket pricing of its competitors and the structure 
of the entire market. Therefore, airlines should consider the 
corresponding actions of the competitors to ensure stability of 
the entire market when deciding ticket pricing strategies. In 
order to solve this problem, the game theory can be used as an 
effective approach.    

In recent years, many researchers have studied the pricing 
and competition problems in the air transport market. Mou 
and Li[2] studied the sequential pricing problem with two 

airlines by non-cooperation game model. Lei and Zhou[3] set 
up a stackelberg game model of option pricing for air cargo 
and analyzed the airlines’ optimal pricing decision. Rolf[4] 
analyzed the capacity option pricing in the air cargo industry 
with a two-stage model and a strategy of airline pricing. Xu et 
al.[5] studied the airlines’ pricing dynamic problem under 
different seat allocation rules. Wang[6] investigated the 
airlines’ pricing game model with complete and incomplete 
information separately; she analyzed the reasons of 
undesirable price wars between airlines. Xiao[7] studied the 
airlines’ pricing problem by using the Hotelling model. Jing et 
al.[8] used the game theory to analyze the government 
controlled air ticket price policy. Other studies included 
general pricing strategies under revenue management, real 
time dynamic pricing, pricing under deterministic and 
stochastic demands, dynamic pricing with homogeneous 
products, and pricing problems for airline alliances[9–11].    

While many studies both domestic and foreign have 
addressed and reached valuable conclusions on the airlines’ 
price competition problem, some areas need to be further 
investigated. First, the majority of the papers assumed that 
airlines have perfect rationality in pricing decision-making, 
but in fact, airlines cannot get enough or complete information 
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about the air transport market, so airlines’ price competition 
can only be of a bounded rationality. Secondly, most papers 
assumed that airlines are homogeneous; however, considering 
the airline network, quality of service, and marketing channel, 
it is impossible for two airlines to provide the same products. 
Thirdly, many of the papers focused on the static game model 
of airlines’ price competition. But when the bounded 
rationality of a decision is taken into consideration, airlines 
need a lot of time to do the pricing game repeatedly in order to 
gradually achieve market equilibrium.  

Due to the three points mentioned above and the lack of 
elasticity of aviation demand in China[8], we adopt the average 
pricing model, and build the airlines’ price competition game 
model with differentiation strategy and bounded rationality. 
By using the theory of bifurcation of dynamic systems we 
analyze the existence and stability of equilibrium points of the 
dynamic price competition model and tackle the airlines’ 
dynamic behaviors under different market parameters through 
a numerical simulation.   

2  Model description  

This paper considers that only two airlines have repeated 
dynamic price competitions in the air transport market. Let 
pi(t), i=1, 2 represent the ticket price of the ith airline and 

( )iq t represent the passenger traffic volume at discrete 
periods t, t=0, 1, 2, ···. According to the function of consumer 
utility and demand by Dowrick and Raju, we can obtain the 
following market demand function:   

1 1 1 1 1 2

2 2 2 2 2 1

( ) ( ) ( )
( ) ( ) ( )

q t a b p t p t
q t a b p t p t

θ
θ

= − +
= − +

          (1) 

where ai (i=1, 2) are positive parameters of the ith airline’s 
market demand, and positive parameters bi represent the 
price-sensitivity coefficient, which means the larger the value, 
the larger the price elasticity of demand. The cross-price 
elasticity coefficient, positive parameter θi, is the differential 
parameter representing the differentiation between two 
airlines. To be more specific, the differential parameter θ1 

represents the second airline’s differentiation towards the first 
airline. The smaller the value of θ1, the larger the 
differentiation between the two airlines is and the alternative 
is smaller. Distinguishingly, when θ1=0, it denotes that the 
products of the two airlines are completely different. At this 
moment, the second airline’s differentiation to the first airline 
is the biggest and the substitution is the smallest. When 
0<θi<bi (i=1, 2), it means that the cross-price effect is lower 
than its own price effect on airlines. In this paper we let a1=a2, 
b1=b2, θ1≠θ2 for convenient expression. Therefore, Eq. (1) 
becomes the following form:  
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         (2) 

It is assumed that the cost function has the linear form of 
Ci=ciqi. With these assumptions, the profit of the ith airline at 

period t is given by:     
1 2( ( ), ( )) ( ( ) )( ( ) ( ))i i i i i jp t p t p t c a bp t p tθΠ = − − +      (3) 

where i, j=1, 2, i≠j. Taking the partial derivative of 1 2( , )i p pΠ  
about pi and the marginal profit for the ith airline at an 
arbitrary period t of the strategy space gives:   
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This optimization price reaction decision problem has a 
unique solution in the form based on Eq. (4). 

( ) ( )
( )

2
i i j

i

a bc p t
p t

b
θ+ +

=                         (5) 

While the information in the air transport market is 
completely rational, the ith airline can use Eq. (5) to decide its 
market price. Thus, Eq. (5) is usually called the “perfect 
decision”.   

As the airlines are bounded rationally in price 
decision-making, the price has to constantly be adjusted to 
achieve the market equilibrium state with many periods of 
price competition. It is assumed that both airlines use 
“myopic” adjustment mechanism. Thus airlines determine 
their price with the information of marginal profit 
maximization from the last period. The airline decides to 
increase (decrease) its market price at period (t+1) if it has 
estimated to have a positive (negative) marginal profit at 
period t. Thus, the dynamic adjustment mechanism can be 
modeled as  

( ( ), ( ))
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where αi are positive parameters which represent the speed of 
price adjustment of the ith airline which is the reflection of the 
reaction speed of marginal profit.   

Hence the airlines dynamic price competition game in this 
case is formed from combining Eqs. (4) and (6). Then the 
dynamic system of differentiation strategy and bounded 
rationality is described by:  
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[ ]

1 1 1 1 1 1 1 2

2 2 2 2 2 2 2 1

( 1) ( ) ( ) ( ) 2 ( ) ( )

( 1) ( ) ( ) ( ) 2 ( ) ( )

p t p t p t a bc bp t p t

p t p t p t a bc bp t p t

α θ

α θ

⎧ + = + + − +⎪
⎨

+ = + + − +⎪⎩
       (7) 

3  Analysis of equilibrium point and local stability  

Because the airline dynamic price competition game is an 
economic model, we define the equilibrium points of game as 
nonnegative fixed points which define dynamic system (7) as: 
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By setting pi(t+1)=pi(t) in Eq. (7), we can have at most four 
fixed points E0=(0, 0), E1=(0, (a+bc2)/2b), E2=((a+bc1)/2b, 0), 
and * * *

1 2( , )E p p= , where,  

* *1 1 2 2 2 1
1 22 2
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It is easy to verify that * 0ip >  according to the assumption 
of 0<θi<b (i=1, 2) and 4b2–θ1θ2>0. The fixed points E0, E1, E2 
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