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a b s t r a c t

Although the regulation of membrane receptor activation is known to be crucial for molecular sig-
nal transduction, the molecular mechanism underlying receptor activation is not fully elucidated.
Here we study the physicochemical nature of membrane receptor behavior by investigating the
characteristic molecular vibrations of receptor ligands using computational chemistry and infor-
matics methods. By using information gain, t-tests, and support vector machines, we have identified
highly informative features of adenosine receptor (AdoR) ligand and corresponding functional
amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispens-
able for ligand recognition of AdoRs. These findings may provide new perspectives and insights into
the fundamental mechanism of class A G protein-coupled receptor activation.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Molecular recognition of membrane receptors in biological sys-
tems plays a crucial role in intercellular and intracellular transduc-
tion of signals. G protein-coupled receptors (GPCRs), also known as
seven-transmembrane-segment receptors (7TMRs), are integral
membrane proteins that are connected by 3 extracellular and 3
intracellular loops of variable length, and they transmit ligand
information by interacting with trimeric GTP-binding proteins or
b-arrestins to modulate intracellular pathways. GPCRs constitute
the largest family of proteins encoded in the human genome
[1,2] and play pivotal roles in the transmission of extracellular sig-
nals into cells. This family of proteins is known to react with a
broad range of ligands such as hormone molecules [3], volatile
organic compounds [4], tastants [5,6], and even photons [7]. They
are also major targets of modern drugs and are associated with
more than one-third of pharmaceuticals [8].

Among the GPCR classes, rhodopsin-like class A GPCRs have the
simplest polypeptide ends and the greatest number of reported
three-dimensional (3-D) structures [9]. Firing of a signal and the
accompanying information transfer is elicited by an agonist that
activates its cognate receptor; however, the molecular mechanism
underlying receptor activation is not simple. Lefkowitz and his

colleagues have reported that agonist-biased activation of class A
GPCRs is related to b-arrestins [10–14].

The fundamental mechanism of olfaction mediated by odorant
receptors, members of the class A GPCR family, is controversial
[15–17]. Various attempts have been made to describe the molec-
ular mechanism of ligand-receptor recognition during olfaction,
such as the classical binding theory and vibration theory [18–20]
of electron transfer [21–23]. The former theory, in which ligand
specificity is explained by its molecular shape, has been developed
into the pharmacophore concept and is generally accepted by
researchers. However, this theory is not sufficient to account for
the diversity of ligands and complexity of GPCR agonism. In recent
decades, various models and experiments have been used to
explain the activation of the olfactory receptor, a class A GPCR,
by means of a molecular vibrationally assisted electron tunneling
mechanism [17,21–24].

Borea et al. reported the thermodynamic discrimination in
AdoRs [25,26] and neuronal nicotinic receptor [27] as a method
of studying ligand-receptor interactions. According to these papers,
agonistic binding was both enthalpy- and entropy-driven, while
antagonistic binding was entirely entropy-driven. Pivonka made
a report that the spectral trends of infrared (IR) and/or Raman anal-
yses of human estrogen receptor b (ER-b) ligands mirror the trends
in binding strength values obtained from biological assays [28].
Takane et al. showed the existence of a structure-odor relationship
by a ligand-based approach using EigenVAlue (EVA) descriptor and
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hierarchical clustering [29]. Of the various molecular descriptors,
EVA is a unique approach based on IR range molecular vibrational
frequencies [30]. More recently, computational approaches were
used to search for molecular vibration-activity relationships in
the agonism of histamine and adenosine receptors, and the authors
suggested that the molecular vibrational frequency pattern may
serve as a possible molecular descriptor for the classification of
agonist and antagonist class A GPCR ligands [31,32]. Thus, in this
study, we focus on the possible characteristics that contribute to
the activation of class A GPCRs rather than their conventional bio-
chemical properties.

Although class A GPCRs have relatively low sequence similarity,
their endogenous agonists are highly conserved. Four AdoR sub-
types have been identified: AdoRA1, AdoRA2A, AdoRA2B, and
AdoRA3 [33]. While each AdoR subtype interacts with and is acti-
vated/inactivated by specific ligands, biogenic nucleoside adeno-
sine commonly activates all AdoRs. Adenosine interacts with
AdoRs involved in various diseases including cardiac ischemia,
arrhythmia, neurodegeneration, diabetes, glaucoma, and inflam-
mation [34]. It also plays an important role in managing asthma
and arthritis, and in finding applications for the treatment of pain,
cancer and other disorders [35]. We thus designed and utilized a
computational approach to investigate characteristic molecular
vibrations of AdoR agonists and non-agonists (antagonists and
inverse agonists).

2. Materials and methods

To facilitate their classification, AdoR ligands were grouped into
two categories: agonists and non-agonists. Non-agonists included
antagonists and inverse agonists that block and decrease agonist-
mediated receptor activation, respectively.

2.1. Dataset

A 64-ligand dataset consisting of 30 AdoR agonists and 34 non-
agonists was used (Table S1). Three-dimensional structure data
format (SDF) files for the AdoR ligands were downloaded from
the PubChem Compound Database at the National Center for Bio-
technology Information and subjected to geometry optimization,
molecular vibrational pattern analysis, and further study.

2.2. Molecular vibration calculation and data formulation

First, geometry optimization was carried out since the calcula-
tion of molecular vibrational frequencies requires a given 3-D
structure of a given molecule. The theoretical 3-D conformer SDF
of each molecule was modeled as a single low-energy conforma-
tion by using the Becke and Lee, Yang, Parr correlation (BLYP) den-
sity functional theory (DFT) and standard split-valence basis set 6-
31G(d,p). The results of geometry optimization were then sub-
jected to vibrational frequency calculations. All calculations of
geometry optimization and normal modes of molecular vibration
were performed using the GAMESS program package [36,37].

To compare the molecular vibration patterns of AdoR ligands
while maintaining their characteristics of molecular vibration,
the corralled intensity of molecular vibrational frequency (CIMVF)
of each ligand was generated as a vector of 800 elements as previ-
ously reported [32]. To restrict the number of non-discrete vibra-
tional frequency spaces and retain the properties of molecular
vibration, we discretized the molecular vibration dataset of each
AdoR ligand as follows.

Let ðxi; aiÞ represent the ith pair of vibrational frequency and
amplitude (intensity) among n observed pairs. Transform xi by
yi ¼ j xi

c j where jxj is the largest integer not greater than x and c is

the corral size. Denote M distinct (ascending) integer values of as
fz1; :::; zMg and represent Im for the set of indices corresponding to
the discretized zm (where Im ¼ fijyi ¼ zm; i � f1; ::;nggÞ for
m ¼ 1; . . . ;M. If bm is the sum of amplitudes with indices (a0is) corre-
sponding to Im for m ¼ 1; � � � ;M, then ðz1; b1Þ; ðz2; b2Þ; � � � ; ðzM; bMÞ
become our new discretized data pairs in the range of
0 6 zm 6 4000=c.

Finally, the CIMVF of a ligand is represented as a one-dimen-
sional vector containing 800 elements of vibrational intensity for
the vibrational frequency range from 0 to 4000 cm�1 by setting
the corral size c to 5 cm�1. It should be noted that the CIMVF did
not correspond to the IR or Raman spectrum of the relevant ligand.
During feature selection, the corrals of molecular vibration were
regarded as features of each ligand.

2.3. Feature selection by information gain

The dimension of a dataset is the number of variables or
features that are measured with each observation. One of the chal-
lenges with high-dimensional datasets is that not all of the features
are important or informative for understanding the underlying
mechanism of a particular phenomenon. Feature selection is a
method for reducing meaningless and less informative features.
The overall procedure of feature selection involves scoring each
potential feature according to a particular feature selection metric.
Scoring involves separately counting the occurrences of a feature in
positive- and negative-class training examples, and then comput-
ing a function of these [38]. The information gain (IG) yielded from
a dataset is given by the relative entropy (also known as Kullback–
Leibler divergence [39]) between the prior and posterior probabil-
ities [40]. IG measures the amount of information about the class
prediction in bits, if the only information available is the presence
of a feature and the corresponding class distribution [41].

The IG is

IGðSx; xiÞ ¼ HðSxÞ �
X

v¼ValuesðxiÞ

jSxi¼v j
jSxj

� HðSxi¼vÞ

where H is the entropy function, Sx is the set of training examples, xi

is the vector of the ith variable in the set, and jSxi¼v j / jSxj is the frac-
tion of examples of the ith variable having value m.

Thus, we applied IG-based feature selection to identify the cor-
rals of molecular vibrational frequency that were the most infor-
mative among the 800 elements for binary classification of AdoR
ligands as agonists or non-agonists. An IG of zero implied that
the corresponding feature was no better than that of random sam-
pling. We trained and tested the procedure by applying leave-one-
out cross-validation to each ligand. The calculation of IG was per-
formed using the Weka machine learning package [42].

2.4. Parametric and non-parametric analyses of informative features

Because each group of agonists and non-agonists has a ten-
dency to show intensities in specific frequency ranges, we wanted
to identify a set of meaningful frequency ranges where the mean
responses of the two groups were significantly different. After ana-
lyzing the intensities over the range of 800 features, a subset of 18
features were selected for testing the equality of the mean intensi-
ties of the two groups, where a was equal to 0.01 in two-sample t-
tests.

We also selected meaningful features by using the linear sup-
port vector machine (SVM) to compare the t-test results. For each
feature, the agonist and non-agonist groups were classified by 10-
fold cross validation using the SVM classifier. Here, data sets with
particular features were randomly divided in two sets; 90% of sam-
ples were assigned into a training set and 10% of the samples were
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