

journal homepage: www.FEBSLetters.org

Heparin/heparan sulfate controls fibrillin-1, -2 and -3 self-interactions in microfibril assembly

Laetitia Sabatier^a, Jelena Djokic^a, Dirk Hubmacher^{a,1}, Dzaner Dzafik^a, Valentin Nelea^b, Dieter P. Reinhardt^{a,b,*}

^a Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada ^b Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada

ARTICLE INFO

Article history: Received 1 April 2014 Revised 5 June 2014 Accepted 27 June 2014 Available online 14 July 2014

Edited by Jesus Avila

Keywords: Fibrillin Assembly Microfibrils Heparan sulfate Extracellular matrix Connective tissue Fibronectin

ABSTRACT

Fibrillins form multifunctional microfibrils in most connective tissues. Deficiencies in fibrillin assembly can result in fibrillinopathies, such as Marfan syndrome. We demonstrate the presence of heparin/heparan sulfate binding sites in fibrillin-2 and -3. Multimerization of all three fibrillins drastically increased the apparent affinity of their interaction with heparin/heparan sulfate. Surprisingly, contrary to other reports heparin/heparan sulfate strongly inhibited homo- and heterotypic N-to-C-terminal fibrillin interactions. These data suggest that heparin/heparan sulfate controls the formation of microfibrils at the bead interaction stage.

Structured summary of protein interaction: rFBN1-N binds to rFBN1-C by solid phase assay (View interaction) rFBN1-N binds to rFBN2-C by solid phase assay (View interaction) rFBN2-N binds to rFBN1-C by solid phase assay (View interaction) rFBN2-N binds to rFBN2-C by solid phase assay (View interaction) Fibronectin binds to rFBN2-C by solid phase assay (View interaction) Fibronectin binds to rFBN2-N by solid phase assay (View interaction) Fibronectin binds to rFBN1-N by solid phase assay (View interaction) Fibronectin binds to rFBN1-N by solid phase assay (View interaction) Fibronectin binds to rFBN1-C by solid phase assay (View interaction) Fibronectin binds to rFBN3-C by solid phase assay (View interaction)

© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Three extracellular glycoproteins, fibrillin-1, -2 and -3 constitute the fibrillin family. Each member of this family is characterized by a modular organization composed primarily of calcium-binding epidermal growth factor-like (cbEGF) domains and transforming growth factor (TGF)- β binding domains (TB) [1]. Fibrillins are the main integral components of multi-

* Corresponding author at: Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada. Fax: +1 514 398 5375.

E-mail address: dieter.reinhardt@mcgill.ca (D.P. Reinhardt).

component assemblies, termed microfibrils [2]. Extracted microfibrils display a characteristic "bead-on-a-string" structure [3]. Microfibrils fulfill a number of crucial physiological functions in the cardiovascular system, bones, eyes, skin and other tissues [4]. They act as a scaffold in elastic fiber formation, as stress-bearing entities, and as reservoirs for growth factors of the TGF- β superfamily [5–7]. Deficiencies in microfibrils have devastating consequences on tissue function and integrity resulting in severe connective tissue disorders [8]. Fibrillin-1 mutations result for example in Marfan syndrome, autosomal dominant Weill–Marchesani syndrome and stiff skin syndrome, whereas fibrillin-2 mutations cause congenital contractural arachnodactyly [9–12].

Despite recent advances, the complete mechanism of fibrillin assembly into microfibrils is still poorly defined. We previously demonstrated that the recombinant C-terminal half of fibrillin-1 multimerizes in a cell-associated fashion [13]. The multimers have a characteristic bead shape with 8–12 peripheral arms, closely

http://dx.doi.org/10.1016/j.febslet.2014.06.061

0014-5793/© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Abbreviations: BSA, bovine serum albumin; cbEGF, calcium-binding epidermal growth factor-like domain; MAGP-1, microfibril-associated glycoprotein-1; TB, transforming growth factor- β binding domain; TBS, Tris-buffered saline; TBST, TBS/ Tween-20

¹ Present address: Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA.

resembling the beads in microfibrils. We also showed that multimerization of the fibrillin-1 C-terminus increases the apparent affinity to its N-terminus [13]. Elongation occurs through fibrillin N-to-C terminal interactions in a polarized manner [14,15]. Several molecules have been implicated in microfibril assembly including heparan sulfate and fibronectin [16–19].

Proteoglycans and glycosaminoglycans have been localized to microfibrils and some have been implicated in microfibril assembly. The dermatan sulfate-containing biglycan interacts with microfibrils, whereas decorin can form a ternary complex with fibrillin-1 and microfibril-associated glycoprotein-1 (MAGP-1) [20]. The heparan sulfate-containing proteoglycan perlecan in basement membranes directly interacts with fibrillin-1 and colocalizes with microfibrils at basement membrane zones with potential implications on microfibril assembly in these regions [21]. Kielty et al. have demonstrated that microfibril integrity is disrupted by treatment with chrondroitinase-4.6-sulfate lyases [22]. The most studied glycosaminoglycan in microfibril assembly is heparin/heparan sulfate. Heparan sulfate consists of repeats of sulfated disaccharide units of glucuronic acid and N-acetylglucosamine, and each unit can be modified by N- and O-sulfation as well as by uronate epimerization [23]. These modifications often occur in clusters resulting in sulfated domains. The degree of modification regulates protein interaction to heparan sulfate. For example, fibrillin-1 only interacts with highly sulfated heparan sulfate [17]. Heparan sulfate is not found as a free glycosaminoglycan in tissues. In its physiological state it is covalently linked to a number of core proteins to form various proteoglycans including cell surface located syndecans and glypicans or matrix located perlecan, agrin, collagen type XV or type XVIII [23]. Heparin is structurally very similar to heparan sulfate and is frequently used experimentally as a cost-effective substitute for heparan sulfate [23].

Fibrillin-1 interaction domains with heparin/heparan sulfate have been described in seven regions of the protein (see Fig. 1A) [17,19,24–26]. A heparin/heparan sulfate interaction site in fibrillin-2 has been localized to cbEGF7-TB3 [19]. The fibrillin-1 heparin/heparan sulfate interaction sites were shown to be specific for heparin/heparan sulfate and could not interact with other glycosaminoglycans [17]. Knowledge of heparin/heparan sulfate interactions with fibrillin-2 is still rudimentary, and it is not known if fibrillin-3 also interacts with this glycosaminoglycan. Heparin/ heparan sulfate may regulate the composition of microfibrils as it inhibits in vitro the interactions of tropoelastin or MAGP-1 with

Fig. 1. Fibrillin interactions with heparin and heparan sulfate. (A) A schematic drawing of recombinant fibrillin-1, -2 and -3 is shown on top. The "Interactions" panel indicates previously identified heparin-binding sites ("H") as well as N-to-C-terminal ("NC") fibrillin interaction sites in fibrillin-1. The "Recombinant Fragments" panel illustrates the fibrillin fragments used in this study. The color and symbol of each fragment corresponds to the respective fragment binding profile in B and C. Note that the first heparin-binding site located in the N-terminal propeptide of fibrillin-1 is not included in the recombinant fragments. The "Domains" panel indicates the names of the domains corresponding to the schematic fibrillin drawing on top. (B) Shown is a representation of a typical solid phase binding assay. Heparin-BSA (closed symbols) and BSA (open symbols) used as a control, were immobilized. Serial dilutions of recombinant fibrillin fragments were added to immobilized heparan sulfate-BSA. For B and C, all C-terminal fragment preparations consisted of a mixture of fibrillin assembly states and were not gel-filtrated. Data sets represent means of duplicates; standard deviations are indicated. Non-specific interaction with BSA (OD4_{92nm} = 0.1–0.2) was subtracted from all values.

Download English Version:

https://daneshyari.com/en/article/10870152

Download Persian Version:

https://daneshyari.com/article/10870152

Daneshyari.com