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The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxi-
dation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron
transporting complexes bc; complex and the cytochrome c oxidase assemble into large supercom-
plexes, allowing efficient energy transduction. Currently, we have only limited information about

what determines the structure of the supercomplex. Here, we characterize Aim24 in baker’s yeast
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as a protein, which is integrated in the mitochondrial inner membrane and is required for the struc-

tural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory
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chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24
has a function in stabilizing the respiratory chain supercomplexes.
© 2014 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

1. Introduction

Mitochondria are essential organelles, generate energy by oxi-
dative phosphorylation, play a central role in ion homeostasis
and are necessary for heme and Fe-S cluster biosynthesis [1-3].
Mitochondria form a reticular network in the cell and are sur-
rounded by a double membrane. The outer membrane (OM) sepa-
rates the intermembrane space (IMS) from the cytosol and allows
permeation of small metabolites. The respiratory chain is localized
in cristae structures formed by the inner membrane (IM) and
transfers electrons from reducing equivalents to its terminal accep-
tor molecular oxygen [4-6]. This process is coupled to the transfer
of protons across the inner membrane, generating the membrane
potential. This energy store allows the synthesis of ATP via the
mitochondrial F;Fo ATPase but also drives selective transport of
metabolites, like ADP and ATP via the ADP/ATP carrier AAC across
the membrane [7,8]. As the mitochondrial genome encodes only
for a limited set of proteins, most proteins are nuclear encoded
and need to be imported from the cytosol. The import of proteins
into or across the inner membrane is an energy demanding process
and also highly depends on the membrane potential [9-12].
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The respiratory chain couples the electron transport to the pro-
ton translocation across the membrane. In baker’s yeast Saccharo-
myces cerevisiae several NADH dehydrogenases catalyze the initial
transfer of electrons from NADH onto ubiquinone. In contrast to
mammalian cells, yeast contains single membrane enzymes which
do not form large membrane integrated complexes and are not
able to transfer protons [13]. The bc; complex (complex III), trans-
ferring electrons from ubiquinone to cytochrome c, and the cyto-
chrome c oxidase (complex IV), mediating the final transfer of
electrons onto molecular oxygen, are large membrane complexes
and contribute to the generation of the membrane potential
[14,15]. A number of studies revealed that single complexes of
the respiratory chain oligomerize into distinct large supercomplex-
es [16-18]. In yeast, the dimeric bc; complex associates with one
or two modules of the cytochrome c oxidase forming two distinct
supercomplexes with the stoichiometry IlI;IV and III,IV, [19,20].
This oligomerization limits electron carrier diffusion and thereby
increases the efficiency of the respiratory chain [21]. A similar olig-
omerization has been also reported for the mitochondrial F;Fg
ATPase [22].

The mechanisms, which determine the architecture of super-
complexes are just beginning to emerge. Studies on the assembly
of complexes IIl and IV are suggesting that the assembly process
depends on designated assembly factors, which drive the matura-
tion of these complexes by the stepwise integration of single
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components to a core structure of proteins encoded by the mito-
chondrial genome [23-25]. Concomitant to the assembly of
complex IV and complex III occurs their assembly into supercom-
plexes. Recent studies elucidate that also this process is regulated
by specific assembly factors (Rcf1 and Rcf2) [26-28]. As membrane
protein complexes tightly interact with the lipid bilayer, lipids also
have a strong impact on the integrity of membrane complexes.
Cardiolipin is a phospholipid, which is almost exclusively located
in mitochondrial membranes and is predominantly found in the
inner membrane [29,30]. It is necessary for the stability of respira-
tory chain supercomplexes [31-33] and the structural integrity of
supercomplexes is affected in cardiolipin deficient yeast mitochon-
dria [34]. A similar destabilization of supercomplexes was
described in Barth syndrome patients, carrying an inherited defect
in the cardiolipin biosynthesis pathway, which leads to a severe
form of cardiomyopathy and other symptoms [35-37].

In order to discover novel genes, which are required for mito-
chondrial biogenesis a high throughput analysis identified a set
of candidates defective in mitochondrial inheritance [38]. In this
study, deletion of the gene AIM24 increases the frequency of petite
colony formation and causes a decrease of growth rate on non-
fermentable media. Interestingly, Aim24 was previously identified
as a mitochondrial protein in a high throughput localization study
of chromosomally tagged green fluorescent protein fusions and
was found in mitochondrial fractions in several proteomic
approaches [18,39,40]. We therefore became interested, if Aim24
plays a role in the structure or function of the respiratory chain.
Here, we show that Aim24 is required for maximal activity of the
respiratory chain. Aim24 is integrated in the inner mitochondrial
membrane and necessary for the accurate formation of respiratory
chain supercomplexes.

2. Materials and methods
2.1. Yeast strains and isolation of mitochondria

S. cerevisiae strain BY4741 aim244 was obtained from the Euro-
scarf collection (Euroscarf, Frankfurt, Germany). The yeast strain
Aim24“F* expressing AIM24-GFP fusion was generated by chromo-
somal integration. For complementation assays the sequence
encoding for AIM24 was cloned into the plasmid pRS416 and
transformed into aim244 cells. Yeast strains YPH499 expressing a
Cor1-ZZ and a COX4-ZZ fusion were described previously [26]. Yeast
cultures were grown at 30 °C unless otherwise indicated in rich
medium (1% yeast extract, 2% peptone and 2% dextrose or 3% glyc-
erol) or selective medium (0.67% yeast nitrogen base with selected
amino acids and 2% dextrose). Yeast mitochondria were isolated as
described previously [41].

2.2. Measurement of enzymatic activities

Malate dehydrogenase activity was determined by the spectro-
photometrical measurement of NADH oxidation at 340 nm. Triton
X-100-lysed mitochondria were analyzed in an assay buffer con-
taining 100 mM potassium phosphate buffer, 0.1 mM NADH and
0.2 mM oxaloacetate as a substrate. The extinction coefficient of
NADH at 340 nm was 6.3 mM~! cm~!. Cytochrome c oxidase activ-
ity was followed by measuring the oxidation of chemically reduced
cytochrome c at 550 nm. Cytochrome c, was reduced by dithionite
before adding it 1:50 (w/v) to the assay buffer (40 mM potassium
phosphate buffer, pH 7.5). Reactions were started by addition of
Triton X-100-lysed mitochondria. NADH - cytochrome c reductase
activity was assessed by the change of absorbance at 550 nm dur-
ing reduction of cytochrome c. Mitochondria were added to 0.02%
(w/v) oxidized cytochrome c in assay buffer (40 mM potassium

phosphate buffer, pH 7.5, 0.5 mM NADH and 0.1 mM KCN). Con-
centrations of reduced/oxidized cytochrome ¢ were determined
using the extinction coefficient at 550 nm of 21.84 mM~! cm™!
[42].

2.3. Determination of mitochondrial respiration

The consumption of molecular oxygen over time of isolated
mitochondria was measured with a XF96 Extracellular Flux
Analyzer (Seahorse Bioscience, Billerica, MA, USA). After calibration
at 30 °C, baseline respiration was measured in MAS buffer (70 mM
Sucrose, 220 mM Mannitol, 2 mM HEPES, 10 mM KH,PO,4, 5 mM
MgCl,, 1 mM EGTA, 0.2% BSA). Subsequent measurements of oxy-
gen consumption were performed after administration of 10 mM
succinate and 4 mM ADP and after 4 mM KCN. Each sample was
assayed in triplicates.

2.4. In vitro import and assembly into isolated mitochondria

For synthesis of [>°S]labeled Aim24 and Cox5a precursor pro-
tein, the open reading frame was amplified from genomic DNA
by primers containing the SP6 promoter sequence. The PCR prod-
uct was transcribed and purified (mMMESSAGE mMACHINE SP6 Sys-
tem and MEGAclear kit, Ambion) and subsequently used for in vitro
translation (Flexi Rabbit Reticulocyte Lysate System, Promega) in
the presence of [>°S]labeled Methionine. Radiolabeled precursor
was imported into isolated yeast mitochondria as described previ-
ously [43]. The samples were analyzed by SDS- or BN-PAGE and
[3>S]labeled proteins were detected using Phosphor Screens (GE-
Healthcare) and subsequent digital autoradiography (Storm imag-
ing system, GE Healthcare).

2.5. Microscopy

Cells were analyzed using a DeltaVision Spectris fluorescence
microscope (Olympus [X71; Applied Precision, Issaquah, WA). For
each image 10-15 Z-section images were taken at 0.5 pm intervals
after focusing on the middle plane of the cell. Images were decon-
voluted using soft WoRx, version 3.5.1 (Great Falls, MT).

2.6. Protein isolation

For the isolation of the respiratory chain complex, mitochondria
containing ZZ-tagged proteins (protein A) were solubilized
(100 mM NaCl, 20 mM Tris/HCl (pH 7.4), 5% (v/v) glycerol,
0.5 mM EDTA, 1% (w/v) digitonin and 2 mM PMSF). After a clarify-
ing-spin, samples were incubated with IgG Sepharose and exten-
sively washed with buffer containing 0.3% (w/v) digitonin. Bound
proteins were eluted by TEV protease cleavage and analyzed by
SDS-PAGE and Western blotting.

2.7. Lipid extraction

Isolated mitochondria were extracted in 2/1 (v/v) chloroform/
methanol and subsequently washed with water and 1/1 (v/v)
methanol/water. After evaporation of the solvent the extract was
solved in chloroform and spotted on TLC plates (HPTLC Silica Gel
60 F254, Merck). The lipids were separated in 50/50/3 (v/v/v) chlo-
roform/methanol/25% ammonia and stained with 470 mM CuSO,
in 8.5% o-phosphoric acid and dried at 180 °C for 10 min [44].

2.8. Miscellaneous
For SDS-PAGE and Western blotting of proteins to polyvinyli-

dene fluorid (PVDF) membranes standard techniques were used.
Primary antibodies were raised in rabbit and secondary antibodies
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