ARTICLE IN PRESS

FEBS Letters xxx (2014) xxx-xxx

5 6

journal homepage: www.FEBSLetters.org

Identification of a SecM segment required for export-coupled release from elongation arrest

7 Q1 Kenta Nakamori, Shinobu Chiba, Koreaki Ito*

8 Faculty of Life Sciences and Structural Biology Research Center, Kyoto Sangyo University, Kyoto 603-8555, Japan

10 ARTICLE INFO 3 7 13 Article history: 14 Received 12 May 2014 Revised 9 June 2014 15 16 Accepted 11 June 2014 17 Available online xxxx 18 19 Edited by Michael Ibba 20 Keywords: 21 Translation arrest 22 Ribosome stalling 23 SecM

23 Secivity 24 Secivity

39

40

25 Protein translocation

1. Introduction

41 Protein localization to the bacterial cell envelope involves total 42 or partial translocation of newly synthesized proteins across the cytoplasmic membrane. Signal peptides direct preproteins to the 43 SecYEG translocon for the transmembrane movement, which is 44 driven by the SecA translocation ATPase [1,2]. The expression level 45 of SecA is feedback controlled by the cellular activities of protein 46 47 export, such that it is upregulated in response to a defect in the Sec pathway [3]. In Escherichia coli, SecM plays a key role in this 48 49 regulation [4–6]. It is encoded by an open reading frame of 170 codons located upstream of secA [7,8]. Translation of secM under-50 goes elongation arrest [5,6] in such a way that the nascent 51 peptidyl-glycyl¹⁶⁵-tRNA resides in the P-site and Prolyl¹⁶⁶-tRNA 52 resides in the A-site of the ribosome [9]. The nascent SecM poly-53 peptide interacts with the components of the ribosomal exit tunnel 54 [6], leading to transpeptidation-incompatible configurations of the 55 56 ribosomal peptidyl transferase center as well as of the P-site peptidyl-tRNA and the A-site prolyl-tRNA [10,11]. Several amino acid 57 residues of SecM, including Pro166 and Arg163, are required for 58 the elongation arrest [6,12], although Pro166 is actually not incor-59 60 porated into a polypeptide in the arrested translation complex [9]. The stalled ribosome prevents the intergenic region of the 61 secM-secA mRNA from forming a stem-loop structure that seques-62

ABSTRACT

SecM in *Escherichia coli* has two functionally crucial regions. The arrest motif near the C-terminus interacts with the ribosomal exit tunnel to arrest its own translational elongation. The signal sequence at the N-terminus directs the SecM nascent polypeptide to the Sec-mediated export pathway to release the arrested state of translation. Here, we addressed the importance of the central region of SecM. Characterization of internal substitution and deletion mutants revealed that a segment from residue 100 to residue109 is required for the export-coupled release of the SecM nascent chain from the elongation-arrested state. Thus, the central region of SecM is not just a geometric linker but it participates actively in the regulation of translation arrest.

© 2014 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

38

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

28

29

30

31

32

33

34 35

36

37

ters the translation initiation (Shine-Dalgarno) sequence of *secA* [13], hence allowing de novo initiation of translation of *secA*. Thus, the translation level of *secA* correlates positively with the duration of the SecM translation arrest [5,14,15]. Importantly, arrested translation resumes when the SecM nascent chain engages in the Sec-mediated export process [5,6]. This "arrest release" process appears to be triggered by physical force of export that is applied to the nascent chain [16–18].

SecM represents a peculiar protein that functions in its nascent, ribosome-tethered state. The full-length SecM, which is rapidly degraded in the periplasm, is thought to be devoid of any function [5], raising a question about the role of its main body flanked by the signal and the arrest sequences. Here, we addressed this question and found that a segment of residues 100–109 plays an important role in the export-coupled arrest release.

2. Results

2.1. Stability of SecM translation arrest

The transient translation arrest of SecM in export-proficient 80 *E. coli* cells is required for the basal level expression of SecA [15]. 81 We assessed the rate of the arrest release in wild-type cells at 82 37 °C. To avoid the rapid proteolysis of the mature form of SecM 83 by the C-terminal-tail-specific protease, Prc, [5], we attached the 84 Flag-tag to its C-terminus (Fig. S1). SecM-Flag was induced briefly, 85 pulse-labeled with [35 S]methionine for 0.5 min and isolated by 86

0014-5793/© 2014 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Please cite this article in press as: Nakamori, K., et al. Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS Lett. (2014), http://dx.doi.org/10.1016/j.febslet.2014.06.038

^{*} Corresponding author. Fax: +81 75 705 2972. E-mail address: kito@cc.kyoto-su.ac.jp (K. Ito).

http://dx.doi.org/10.1016/j.febslet.2014.06.038

2

ARTICLE IN PRESS

K. Nakamori et al. / FEBS Letters xxx (2014) xxx-xxx

Please cite this article in press as: Nakamori, K., et al. Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS

87 anti-SecM immunoprecipitation. SDS-polyacrylamide gel electro-88 phoresis revealed three radioactive bands, A, P and M (Fig. 1A). 89 Band A represents the polypeptide moiety of the arrested SecM^{1–} ¹⁶⁵-tRNA. Although the material that gave this band had been 90 linked to a tRNA in vivo [5], the ester linkage between the polypep-91 tide and tRNA was hydrolyzed during immunoprecipitation and 92 electrophoresis [9,19]. During a chase with unlabeled methionine, 93 94 the band A intensity declined with a concomitant increase in that of band M, which represented the signal-peptide processed mature 95 96 form of SecM. This conversion takes place through the full-length 97 precursor protein (band P), in which signal peptide processing only occurs after the arrest release (H. Muto, H. Mori, Y. Akiyama and 98 K. Ito, unpublished results). The intensity decrease of band A dur-99 ing chase indicated that the half life of the arrested product of 100 101 SecM-Flag was \sim 60 s (Fig. 1A; Fig. S2, WT).

2.2. Alterations of the SecM central part affect arrest release 102

The mature sequence of SecM starts at Ala38 (Fig. S1) [8]. We 103 constructed a series of substitution mutants of SecM-Flag, referred 104 105 to as Sub(40-69), Sub(70-99) and Sub(100-129), in which the 106 indicated SecM segments were replaced with an unrelated amino 107 acid sequence derived from LacZ (Fig. S1; Table 1). Pulse-chase

Fig. 1. Pulse-chase labeling of SecM-Flag and its variants with a 30 residues substitution in the central part. E. coli cells expressing SecM-Flag (A) and its Sub(40-69) (B), Sub(70-99) (C) and Sub(100-129) (D) derivatives were pulselabeled with [³⁵S]methionine for 0.5 min at 37 °C (lane 1), followed by chase with unlabeled methionine for 1 (lane 2), 2 (lane 3), 3 (lane 4), 4 (lane 5) and 5 (lane 6) min. Radioactive SecM-Flag polypeptides were isolated by immunoprecipitation, using anti-SecM antibodies, and separated by SDS-polyacrylamide gel electrophoresis into three species; A, P and M. Band A represents the polypeptide moiety of the elongation-arrested SecM peptidyl-glycyl-tRNA. Band P represents the full-length SecM secretory precursor retaining the signal peptide. Band M represents the signal-peptide processed mature form of SecM.

Lett. (2014), http://dx.doi.org/10.1016/j.febslet.2014.06.038

SecM variants examined.

Abbreviated name	Amino acid alterations introduced into SecM-Flag	Plasmid name
WT	None	pKN1
Sub(40–69)	Residues 40–69 replaced with LacZ(301–330)	pKN2
Sub(70–99)	Residues 70–99 replaced with LacZ(301–330)	pKN3
Sub(100-129)	Residues 100–129 replaced with LacZ(301–330)	pKN4
Sub(90–99)	Residues 90–99 replaced with LacZ(311–320)	pKN117
Sub(100-109)	Residues 100–109 replaced with LacZ(311–320)	pKN118
Sub(110-119)	Residues 110–119 replaced with LacZ(311–320)	pKN119
$\Delta(90-99)$	Residues 90-99 deleted	pKN10
Δ(100-109)	Residues 100-109 deleted	pKN11
Δ(110-119)	Residues 110-119 deleted	pKN12
Δ(120-129)	Residues 120-129 deleted	pKN13
Δ(130–139)	Residues 130-139 deleted	pKN14
Pro166Ala	Pro166Ala	pKN5
Pro166Ala Sub(100–129)	Pro166Ala, residues 100–129 replaced with LacZ(301–330)	pKN8
Pro166Ala ∆(100–109)	Pro166Ala, residues 100–109 deleted	pKN15

experiments (Fig. 1) showed that the arrest band was markedly 108 stabilized in Sub(100-129) (Fig. 1D); the half life of the arrest pro-109 duct was increased at least twofold (Fig. S2). Sub(40-69) also pro-110 duced a somewhat stabilized arrest product (Fig. 1B). The arrest product of Sub(70-99) appeared to be destabilized (Fig. 1C; note that this variant lacks Met97 such that its mature form is invisible). These results suggest that the central region of SecM plays some role in the regulation of the elongation arrest.

To gain further insights into the role of the central region of SecM, we introduced 10 residue-deletions starting from residue 90 (Δ (90–99)), residue 100 (Δ (100–109)), residue 110 (Δ (110– 119)), residue 120 (Δ (120–129)) and residue 130 (Δ (130–139)) (Fig. 2). Among the five mutant proteins tested, the arrest band of $\Delta(100-109)$ uniquely persisted up to the 5 min chase period tested (Fig. 2B, lane 6) and its half life was estimated to be \sim 180 s (Fig. 2; Fig. S3). The other deletion mutants were normal in stability of the arrest products. These results show that the segment 100-109 of SecM is required for the efficient arrest release. This was substantiated by constructing and analyzing SecM-Flag derivatives, in which segments 90-99, 100-109 and 110-119 were replaced with residues 301–310 of LacZ (Fig. 3). Pulse chase analysis showed that the Sub(100-109) mutation stabilized the arrest product of SecM (Fig. 3B). By contrast, neither the Sub(90-99) nor the Sub(110-119) mutation impaired the arrest release (Fig. 3A and C); the former somewhat accelerated it.

Given the evidence that the segment 100–109 is involved in the 133 arrest release of SecM, we mutated each of the 10 residues to ala-134 nine, except for Ala105 that was mutated to Ser. None of the 135 mutants showed a defect in the arrest release as strongly as 136 Δ (100–109) or Sub(100–109). It is suggested that this segment as a whole contributes to the efficient arrest release of SecM in export-proficient cells in a manner that a single substitution is tolerated.

2.3. Segment 100–109 of SecM is not intrinsically required for the export competence

Engagement of the SecM nascent polypeptide in the SecA-143 SecYEG-mediated export across the membrane is a prerequisite 144 for its release from the elongation-arrested state [5,6]. Therefore, 145 arrest release defect observed with Sub(100-129), 146 the

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

141

142

Download English Version:

https://daneshyari.com/en/article/10870180

Download Persian Version:

https://daneshyari.com/article/10870180

Daneshyari.com