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32Neuronal circuits in the olfactory bulb transform odor-evoked activity patterns across the input
33channels, the olfactory glomeruli, into distributed activity patterns across the output neurons, the
34mitral cells. One computation associated with this transformation is a decorrelation of activity pat-
35terns representing similar odors. Such a decorrelation has various benefits for the classification and
36storage of information by associative networks in higher brain areas. Experimental results from
37adult zebrafish show that pattern decorrelation involves a redistribution of activity across the popu-
38lation of mitral cells. These observations imply that pattern decorrelation cannot be explained by a
39global scaling mechanism but that it depends on interactions between distinct subsets of neurons in
40the network. This article reviews insights into the network mechanism underlying pattern decorr-
41elation and discusses recent results that link pattern decorrelation in the olfactory bulb to odor dis-
42crimination behavior.
43� 2014 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
44
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47 1. Computational functions of neuronal circuits and the
48 olfactory system

49 Higher brain functions are not directly determined by the bio-
50 physical properties of individual neurons but emerge from interac-
51 tions between many neurons in synaptically connected networks.
52 Deciphering such networks is central to understanding the princi-
53 ples of biological computation, the relationship between brains
54 and computers, brain dysfunction in mental disorders, and the very
55 nature of humans and other animals. Neurons are organized in
56 structured networks, or circuits, that are typically defined as cir-
57 cumscribed populations of interconnected neurons. Small circuits
58 such as repetitive columnar elements of the optic lobes in Droso-
59 phila may be comprised of <100 neurons [1] while large circuits
60 such as mammalian piriform cortex or cerebellar lobules can con-
61 tain 106 neurons or more [2]. Most neuronal circuits consist of
62 functionally diverse types of neurons and contain prominent feed-
63 back loops. The computational potential of such systems is enor-
64 mous [3] but we are only beginning to understand how this

65potential is realized in biological circuits. A systematic and some-
66what reductionist approach to understand brain functions may
67thus ask what different circuits compute, and how these computa-
68tions are achieved mechanistically as neurons exchange and inte-
69grate biophysical signals.
70The challenge to understand a neuronal computation obviously
71depends on the complexity of the computation and the underlying
72circuit. Some computations can be described based on first-order
73statistical properties of neuronal connectivity (average connection
74strength) and based on univariate properties of neuronal activity or
75simply mean firing rate. These quantities can often be measured
76using well-established methods and the computations can often
77be described by tractable mathematical models. One example of
78such a computation is ‘‘normalization’’, an important elementary
79operation that scales responses of individual neurons as a function
80of the mean population activity [4,5]. Other computations, how-
81ever, depend on higher-order properties of connectivity and on
82multivariate properties of activity patterns. These diverse and
83potentially complex computations have not yet been explored
84exhaustively. Some of these computations are likely to depend
85on the activity of specific subsets of neurons and on specific con-
86nectivity. For example, receptive field properties of neurons in pri-
87mary visual cortex are thought to be shaped by specific
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88 connectivity among neurons with similar feature selectivity [6],
89 and storage of arbitrary information in memory networks such as
90 the hippocampus is thought to depend on experience-dependent
91 modifications of synaptic connections between specific subsets of
92 neurons [7]. Analyzing the mechanisms underlying such computa-
93 tions, and even defining the computations themselves, is often
94 hampered by experimental constraints. It is, for example, possible
95 to record activity only from subsets of neurons within a large
96 population. The sample size of population activity measurements
97 may thus be sufficient to determine simple statistical properties
98 of neuronal activity patterns but fail to resolve higher-order fea-
99 tures. Detailed descriptions of the connectivity among individual

100 neurons are lacking for most circuits, with few exceptions [1,8–
101 10]. Furthermore, mathematical analyses of networks with
102 higher-order structure can become extremely complex. Under-
103 standing neuronal computations depending on higher-order circuit
104 features is therefore a major challenge in neuroscience.
105 This review focuses on the decorrelation of odor-evoked activity
106 patterns in the OB, a computation that reduces the overlap (Pear-
107 son product-moment correlation coefficient) between activity pat-
108 terns representing different, yet structurally similar, odors. A
109 neuronal activity pattern at time t may be represented by a vector
110 where each element represents the firing rate of one neuron, mea-
111 sured during a small time window around t. Highly overlapping
112 activity patterns are thus represented by vectors that have a high
113 Pearson correlation coefficient, i.e., they project in similar direc-
114 tions within the high-dimensional coding space. Pattern decorrela-
115 tion reorganizes activity patterns so that the Pearson correlation
116 coefficient of the corresponding activity vectors decreases and
117 their angular separation increases. As a consequence, it becomes
118 easier to find a procedure – a classifier – to distinguish between
119 the activity vectors. Pattern decorrelation is thus useful for pattern
120 classification, a key operation in many higher brain functions such
121 as object recognition, decision making and associative memory.
122 Models of pattern classification in the brain assume that activity
123 patterns are at least partially decorrelated. This assumption is
124 often necessary to achieve good performance, to avoid destructive
125 phenomena such as catastrophic interference, and to enable var-
126 ious other operations [11–17]. However, few studies have directly
127 analyzed pattern decorrelation in the brain, possibly because it has
128 been difficult to measure neuronal activity patterns across large
129 numbers of neurons.
130 One brain area where pattern decorrelation was observed is the
131 dentate gyrus of the hippocampus [18,19], which is assumed to
132 pre-process activity patterns representing complex, multisensory
133 information for storage and classification in other hippocampal
134 subfields such as CA3 [20,21]. However, the underlying mechan-
135 isms are not understood in detail. Another brain area where pat-
136 tern decorrelation has been studied is the OB, particularly in
137 zebrafish [22–26]. Among the multiple targets of the OB is the piri-
138 form cortex, a large paleocortical area with an architecture similar
139 to that of hippocampal area CA3. Like CA3, piriform cortex has
140 been proposed to function as an associative memory system for
141 the storage of information encoded by distributed activity patterns
142 [27–29]. Pattern decorrelation may therefore subserve similar gen-
143 eral functions in the OB and in the dentate gyrus although differ-
144 ences in the neuronal architecture of these circuits suggest that
145 the underlying mechanisms are not identical.
146 The OB is the only olfactory processing center between sensory
147 neurons in the nose and multiple higher telencephalic areas. Olfac-
148 tory input reaches the OB through an array of discrete input chan-
149 nels, the olfactory glomeruli (Fig. 1), each of which receives
150 convergent input from sensory neurons expressing the same odor-
151 ant receptor [30]. Individual odorant receptors and glomeruli
152 respond to multiple odorants, and each odorant activates a specific
153 combination of glomeruli [30,31] (Fig. 2A). Odors are therefore

154encoded in a combinatorial fashion and presented to the OB as dis-
155crete, usually distributed, glomerular activation patterns. Odorants
156with similar molecular features activate overlapping combinations
157of glomeruli, probably as a direct consequence of the molecular
158mechanisms governing receptor-ligand interactions. Glomerular
159representations of chemically similar odorants are therefore highly
160correlated. In order to facilitate stimulus classification, autoasso-
161ciative memory and other tasks it appears useful to reduce these
162correlations at an early stage of sensory processing.
163Sensory input from the array of glomeruli is processed in the OB
164by a network of principal neurons, the mitral/tufted cells (MCs),
165and multiple classes of interneurons including periglomerular
166cells, short-axon cells and granule cells [32] (Fig. 1). MCs are gluta-
167matergic, receive glutamatergic input from sensory neurons and
168inhibitory input from interneurons, and convey the output of the
169OB to multiple higher brain areas including piriform cortex. Indivi-
170dual MCs receive sensory input only from one or a few glomeruli
171and are not directly coupled to MCs associated with other glomer-
172uli. Periglomerular cells are located in the input (glomerular) layer
173of the OB and comprise multiple subtypes [33]. They are small neu-
174rons that receive input from various sources and provide GABAer-
175gic output to MCs. Short-axon cells are also located mainly in
176superficial layers but often have long processes [34]. They can have
177inhibitory or depolarizing effects on MCs that are mediated by
178GABAergic synapses and gap junctions, respectively [35]. Granule
179cells are located in deep layers and are by far the most numerous
180cell type in the OB. They are axonless, receive glutamatergic input
181from dendrites and axon collaterals of MCs, and make GABAergic
182synapses back onto MCs. Many of the dendro-dendritic connec-
183tions between MCs and granule cells are reciprocal. The synaptic
184connectivity among neurons in the OB therefore provides multiple
185paths for interactions between MCs, even though MCs are not
186directly connected across glomeruli. These synaptic pathways
187extend over multiple spatial scales and often have inhibitory
188effects on MCs. In addition, multiple types of interneurons, but
189not MCs, receive input from higher brain areas.
190MCs respond to odor stimulation with slow modulations of
191their firing rates (Fig. 2B) and with oscillatory synchronizations

Fig. 1. Schematic illustration of selected cell types and synaptic connections in the
OB. Modified from [91].
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