ARTICLE IN PRESS

FEBS Letters xxx (2014) xxx-xxx

journal homepage: www.FEBSLetters.org

Review

Diverse diseases from a ubiquitous process: The ribosomopathy paradox

Joy Armistead^a, Barbara Triggs-Raine^{a,b,*}

^a Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada ^b The Manitoba Institute of Child Health, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada

ARTICLE INFO

Article history: Received 9 January 2014 Revised 8 March 2014 Accepted 12 March 2014 Available online xxxx

Edited by Ulrike Kutay

Keywords: Ribosomopathy Ribosome biogenesis Tissue specificity IRES elements

1. Introduction

The ribosomopathies are a diverse group of disorders which. despite their heterogeneity at a clinical level, affect the same biochemical process. They are each caused by mutations in a gene encoding either a ribosomal protein, or a component of the apparatus required for ribosome biosynthesis. Ribosomes are large and complex molecules comprised of both RNA and protein, assembled into a functional, multi-subunit enzyme. The large or 60S ribosomal subunit is composed of the 28S, 5S and 5.8S rRNAs, and 47 proteins; the small or 40S ribosomal subunit is composed of the 18S rRNA and 33 proteins. Assembly of a functional 80S ribosome, containing both the small and large subunits, is a complex, multi-step process. It requires the coordinated activities of all three RNA polymerases, 75 small nucleolar RNAs (snoRNAs), and roughly 200 other non-ribosomal factors that are involved in the transcription, export, translation, re-importation, modification, assembly, and maturation of the ribosomal subunit components. These non-ribosomal factors include helicases, exo- and endonucleases, methyltransferases, and isomerases which modify the nascent rRNA [1-3]. To generate the mature 18S, 28S, and 5.8S rRNAs, a precursor 45S rRNA is transcribed by RNA polymerase I as a long polycistronic transcript which is then extensively processed

E-mail address: traine@cc.umanitoba.ca (B. Triggs-Raine).

ABSTRACT

Collectively, the ribosomopathies are caused by defects in ribosome biogenesis. Although these disorders encompass deficiencies in a ubiquitous and fundamental process, the clinical manifestations are extremely variable and typically display tissue specificity. Research into this paradox has offered fascinating new insights into the role of the ribosome in the regulation of mRNA translation, cell cycle control, and signaling pathways involving TP53, MYC and mTOR. Several common features of ribosomopathies such as small stature, cancer predisposition, and hematological defects, point to how these diverse diseases may be related at a molecular level.

© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

through cleavage and modification events, ensuring equimolar amounts of these rRNA species. The 5S rRNA is transcribed independently by RNA polymerase III in the nucleoplasm, undergoing its own maturation pathway before re-importation into the nucleolus [4]. The ribosomal protein genes are transcribed by RNA polymerase II, and assembled with nascent rRNA in the nucleolus. The pre-60S and pre-40S ribosomal subunits are exported into the cytoplasm where they undergo final maturation steps to become the mature 60S and 40S subunits, which can then join to form the 80S ribosome.

Individually, the ribosomopathies are rare and phenotypically unique. Intuitively, mutations affecting the ribosome, a molecule essential for protein synthesis in every cell, should affect all tissues and cell types. On the contrary, ribosome biogenesis disorders are highly heterogeneous in both their physical manifestations and modes of inheritance, and there is a surprising tendency toward tissue specificity in these diseases (Table 1). Among the autosomal dominant ribosomopathies are Diamond-Blackfan anemia (OMIM #105650), primarily characterized by macrocytic anemia [5–9]; Treacher Collins syndrome (OMIM #154500 and #613717), which also has an autosomal recessive form (OMIM #248390) and is primarily a disorder of craniofacial abnormalities [10-14]; isolated congenital asplenia (OMIM #271400), a disorder of spleen development leading to severe bacterial infections [15]: and the autosomal dominant form of aplasia cutis congenita (OMIM %107600), a non-syndromic disorder of skin development usually localized to the scalp [16]. The ribosomopathies inherited in an autosomal recessive fashion include Shwachman-Diamond syndrome (OMIM

http://dx.doi.org/10.1016/j.febslet.2014.03.024

0014-5793/© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: Armistead, J. and Triggs-Raine, B. Diverse diseases from a ubiquitous process: The ribosomopathy paradox. FEBS Lett. (2014), http://dx.doi.org/10.1016/j.febslet.2014.03.024

^{*} Corresponding author at: Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada. Fax: 1 204 789 3900.

Table 1 Please cite this article in press as: Armistead, J. and Triggs-Raine, B. Diverse diseases from a ubiquitous process: The ribosomopathy paradox. FEBS Lett. (2014). http://dx.doi.org/10.1016/jj.febslet.2014.03.024

The ribosomopathies, including putative mechanisms causing tissue specificity.

Disease	Clinical manifestations	Gene	Function in ribosome biogenesis	Occurrence	Putative mechanism of specificity	References
Autosomal dominant						
Diamond-Blackfan anemia	Anemia, bone marrow failure, craniofacial abnormalities, cardiac defects, cancer predisposition, pre- and postnatal growth retardation, thumb abnormalities, heart defects	RPS7, RPS10, RPS17, RPS19 RPS24, RPS26, RPL5, RPL11, RPL26, RPL35A	Ribosomal proteins	1 in 100000-1 in 200000 live births	Translation of IRES-containing BAG1 and CSDE1 mRNAs in erythroid progenitors	[5–9,38]
Treacher Collins syndrome	Craniofacial abnormalities, occasional microcephaly, mental retardation and psychomotor delay	TCOF1, POLR1D, POLR1C	Transcription of rRNA genes	1 in 40 000-1 in 70 000	Treacle strongly expressed in neural crest cells; Treacle interaction with UBF, fibrillarin, NOP56, Plk1	[10,12–14,39,40]
Isolated congential asplenia	Agenesis or hypoplasia of spleen leading to immunodeficiency	RPSA	Small subunit ribosomal protein	73 cases reported	Unknown	[15,41,42]
Aplasia cutis congenita	Agenesis of skin, usually on scalp vertex	BMS1	Ribosomal GTPase	>500 cases	Unknown	[16,43,44]
Autosomal recessive						
Shwachman-Diamond syndrome	Exocrine pancreas insufficiency, growth retardation, hematologic defects, skeletal abnormalities, cancer predisposition	SBDS	Removal of eIF6 from 60S in final maturation step, allowing binding of 40S and 60S subunits	1 in 76 000 live births	SBDS strongly expressed in developing pancreas	[17,18,45–48]
Bowen–Conradi syndrome	Severe pre- and postnatal growth retardation, psychomotor retardation, microcephaly, micrognathia, joint contractures, rockerbottom feet	EMG1	Pseudouridine-N1-specific methyltransferase	1 in 355 live births in Hutterite population	Unknown	[19,49–52]
Cartilage hair hypoplasia	Short stature, sparse hair, immunologic defects, hematological defects, malabsorption, cancer predisposition	RMRP	Pre-rRNA cleavage	Amish: 1 in 500-1 in 1000; Finnish: 1 in 23 000	Short stature related to rRNA cleavage defect; cancer predisposition putatively caused by defective cyclin B cleavage	[20,21,53,54]
Anauxetic dysplasia	Severe short stature, hypodontia, mental retardation	RMRP	Pre-rRNA cleavage	7 cases reported	Short stature related to rRNA cleavage defect; cyclin B cleavage unaffected thus no cancer predisposition	[20,21,53,54]
Alopecia, neurological defects and endocrinopathy syndrome	Hypoplastic hair, microcephaly, mental retardation, progressive motor retardation, adrenal insufficiency	RBM28	Nucleolar component of the spliceosomal small nucleolar ribonucleoprotein, necessary for 60S biogenesis	5 cases reported	Unknown	[23,55,56]
North American Indian childhood cirrhosis	Transient neonatal jaundice progressing to biliary cirrhosis	CIRH1A	Pre-rRNA processing	Carrier status: 1 in 10 in Quebec Ojibway-Cree population	Cirhin strongly expressed in developing liver	[24,25,57–59]
X-linked recessive						
X-linked dyskeratosis congenita and Hoyeraal–Hreidarsson syndrome	Abnormal skin pigmentation, nail dystrophy, leukoplakia, bone marrow failure, cancer predisposition, short stature, microcephaly, immunodeficiency	DKC1	Pseudouridine synthase	1 in 1000 000	Translation of IRES-containing mRNAs including <i>p27</i> , <i>XIAP</i> , <i>Bcl-xL</i>	[26,28,60–62]
Sporadic						
5q ⁻ syndrome	Macrocytic anemia, predisposition to acute myeloid leukemia	RPS14	Small subunit ribosomal protein	Unknown	Unknown	[31]
T cell acute lymphoblastic leukemia	Leukemia affecting the T-cell lineage	RPL5, RPL10, RPL22	Large subunit ribosomal proteins	In T-ALL: <i>RPL5</i> mutations 5.2%, <i>RPL10</i> mutations 1.9%, <i>RPL22</i> deletions 10%	RPL22 deficiency blocks $\alpha\beta$ T cell development, unknown	[32,33,63]

J. Armistead, B. Triggs-Raine/FEBS Letters xxx (2014) xxx-xxx

Download English Version:

https://daneshyari.com/en/article/10870709

Download Persian Version:

https://daneshyari.com/article/10870709

Daneshyari.com