

journal homepage: www.FEBSLetters.org

A mutational analysis of active site residues in *trans*-3-chloroacrylic acid dehalogenase

CrossMark

Gerrit J. Poelarends^{1,2}, Hector Serrano², Jamison P. Huddleston, William H. Johnson Jr., Christian P. Whitman^{*}

Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, TX 78712-1074, United States

ARTICLE INFO

Article history: Received 5 June 2013 Revised 1 July 2013 Accepted 2 July 2013 Available online 10 July 2013

Edited by Athel Cornish-Bowden

Keywords: Hydrolytic dehalogenation Tautomerase superfamily trans-3-Chloroacrylic acid dehalogenase Enzyme mechanism

ABSTRACT

trans-3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3haloacrylates to yield malonate semialdehyde by a mechanism utilizing β Pro-1, α Arg-8, α Arg-11, and α Glu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (β Asn-39, α Phe-39, and α Phe-50) are unexplored. Mutants were constructed at these positions (β N39A, α F39A, α F39T, α F50A and α F50Y) and kinetic parameters determined along with those of the α R8K and α R11K mutants. Analysis indicates that α Arg-8, α Arg-11, and β Asn-39 are critical for dehalogenase activity whereas α Arg-11 and α Phe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations.

© 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

trans-3-Chloroacrylic acid dehalogenase (CaaD) is a heterohexameric enzyme, which consists of small α -subunits (75 amino acids) and β -subunits (70 amino acids), that converts the *trans*-isomers of 3-haloacrylates (**1** and **2**, Scheme 1) to malonate semialdehyde (**5**), presumably through a halohydrin or enol intermediate (**3** and **4**, respectively) [1,2]. CaaD is part of a catabolic pathway in *Pseudomonas pavonaceae* 170 for *trans*-1,3-dichloropropene, one of the active ingredients in the agricultural nematocides Shell D–D and Telone II [1,3,4]. The enzyme belongs to the tautomerase superfamily, a group of structurally homologous proteins characterized by a conserved β - α - β structural motif and a catalytically important amino-terminal proline [5,6].

In addition to the dehalogenation of the *trans*-3-haloacrylates, CaaD catalyzes the hydration of 2-oxo-3-pentynoate (**6**, Scheme 2A) and 3-chloro- and 3-bromopropiolate (**7** and **8** in Scheme 2B) [7]. Upon hydration, the 3-halopropiolates are converted into potent irreversible inhibitors of CaaD (an acyl halide or a ketene). Inactivation of the enzyme results from the covalent modification

* Corresponding author. Fax: +1 512 232 2606.

E-mail address: whitman@austin.utexas.edu (C.P. Whitman).

of β Pro-1 (**9**, Scheme 2B). Hydration of **6** affords acetopyruvate (**10**), which does not inactivate the enzyme. Although not physiologically relevant, these reactions are analogous to the hydrolytic dehalogenation of **1** and **2**, and their study has provided much insight into the catalytic mechanism of CaaD [8].

For example, much knowledge has been gained from the crystal structure of CaaD inactivated by 3-bromopropiolate (**8** to **9**, Scheme 2B) [9]. The structure identified the active site and suggested interactions that might be responsible for binding and catalysis. In the structure of the inactivated enzyme (Fig. 1, PDB entry 1SOY), β Pro-1 forms a covalent bond to the C-3 of a 3-oxopropanoate moiety, which is the adduct resulting from the enzyme-catalyzed hydration of **8** (Scheme 2B). The carboxylate group interacts with α Arg-8 and α Arg-11, and the remaining portion of the adduct makes hydrophobic contacts with α Phe-50, α Leu-57, and β Ile-37. The carboxylate group of α Glu-52 appears fixed by the amide side chain of β Asn-39. α Phe-39 and α Phe-50 contribute to the active site environment and form part of the active site wall.

Based on this arrangement of active site residues, a working hypothesis for the mechanism of CaaD was formulated (Scheme 3). The positions of α Glu-52 and β Pro-1 in the active site, coupled with the determination of a p K_a value for β Pro-1 of ~9.3 [10], implicated α Glu-52 as the general base catalyst that activates a water molecule for attack at C-3 of **1** (or **2**) and β Pro-1 as the general acid catalyst that provides a proton at C-2. Mutagenesis of these residues confirmed their importance in the mechanism: there was

¹ Present address: Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

² These authors contributed equally to this work.

no detectable activity for the α E52Q mutant and greatly reduced activity for the β P1A mutant [1,9]. The two arginines (α Arg-8 and α Arg-11) likely interact with the C-1 carboxylate group to align the substrate and draw electron density away from C-3. Such an interaction would make C-3 partially positively charged and facilitate the Michael addition of water to generate the intermediate (**3** or **4**) by route A or B (Scheme 3). Replacing either residue by alanine resulted in no detectable activity [1,9].

In this work, the contributions made by β Asn-39, α Phe-39, and α Phe-50 to the activities of CaaD were assessed by mutagenesis and docking studies. Accordingly, β Asn-39 was replaced with an alanine, α Phe-39 was replaced with an alanine or a threonine, and α Phe-50 was replaced with an alanine or a tyrosine. Subsequently, the kinetic parameters for each mutant-catalyzed reaction (using **1**, **2**, or **6**), as well as the pH-rate profile of the α F50A-CaaD-catalyzed reaction (using **2**), were determined and compared to those of the wild-type. In addition, the roles of α Arg-8 and

Fig. 1. A close-up of one CaaD active site where the prolyl nitrogen is covalently attached to the 3-oxopropanoate moiety (PDB entry 1SOY). The residues comprising the active site include β P1, β I37, β N39, α E52, α F39', α L57, α F50, α R8, and α R11 (clockwise from β P1). The prime indicates that α F39' is from an adjacent subunit. The core set of residues consists of β P1, α E52, α R8, and α R11. The residues under investigation nearby the core set are β N39, α F39', and α F50. A putative halide binding pocket consists of β I37, α L57, α F39', and α F50. The Figure was created with PyMol [20].

αArg-11 were examined in more detail by analyzing the kinetic properties of both their alanine (with **6**) and lysine mutants (with **1**, **2**, and **6**). The results show that the interactions of αArg-8 and αArg-11, or a similar cationic group such as lysine, with substrate play an important role in both substrate binding and catalysis. The interaction between the amide side chain of βAsn-39 and the carboxylate group of αGlu-52 is critical for positioning the αGlu-52 side chain in a favorable orientation for the activation of a water molecule [11,12]. This activation of water is essential for the conversion of the 3-haloacrylates **1** and **2**, but not for the conversion of the more electrophilic substrate **6**. Finally, the results suggest that αPhe-50 plays a much more significant role in the CaaD reactions than αPhe-39: αPhe-50 is likely critical for maintaining the active site structural integrity and environment.

2. Materials and methods

2.1. Materials

Chemicals, biochemicals, buffers, solvents, and molecular biology reagents were obtained from sources reported elsewhere [13], or as indicated below. Literature procedures were used for the synthesis of trans-3-bromoacrylic acid (2) and 2-oxo-3-pentynoate (6) [7,14]. The sources for the components of Luria-Bertani (LB) media as well as the enzymes and reagents used in the molecular biology procedures are reported elsewhere [13,15]. The Amicon concentrator and the YM10 ultrafiltration membranes were obtained from Millipore Corp. (Billerica, MA). Pre-packed PD-10 Sephadex G-25 columns were purchased from Biosciences AB (Uppsala, Sweden). Oligonucleotides for DNA amplification and sequencing were synthesized by Genosys (The Woodlands, TX). Escherichia coli strain BL21-Gold(DE3) was obtained from Agilent Technologies (Santa Clara, CA). The construction of the α R8A. aR11A. aR11K. and aF39A mutants of CaaD are described elsewhere [1,9].

2.2. General methods

Techniques for restriction enzyme digestion, ligation, transformation, and other standard molecular biology manipulations were based on methods described elsewhere [15]. The PCR was carried Download English Version:

https://daneshyari.com/en/article/10870871

Download Persian Version:

https://daneshyari.com/article/10870871

Daneshyari.com