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a b s t r a c t

The Michaelis–Menten equation for an irreversible enzymatic reaction depends linearly on the
enzyme concentration. Even if the enzyme concentration changes in time, this linearity implies that
the amount of substrate depleted during a given time interval depends only on the average enzyme
concentration. Here, we use a time re-scaling approach to generalize this result to a broad category
of multi-reaction systems, whose constituent enzymes have the same dependence on time, e.g. they
belong to the same regulon. This ‘‘average enzyme principle’’ provides a natural methodology for
jointly studying metabolism and its regulation.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Biochemical reactions are embedded in complex metabolic net-
works. The dynamic features of these networks, such as the time-
dependent regulation of proteins, underlie the capacity of the cell
to cope with variable environmental conditions [1–3], to allocate
resources efficiently[4], and to achieve complex adaptive strategies
for survival [5]. Several classical studies have addressed the effect
of changing enzyme levels on substrate kinetics [6–10]. Most re-
cent efforts in systems biology, however, tend to focus either on
understanding genome-scale metabolic networks under steady-
state conditions [11,12], or on understanding transcriptional regu-
lation irrespective of the underlying metabolism [13]. While this
separation of biological complexity into metabolic and regulatory
layers has given rise to extremely insightful techniques and analy-
ses, the search for new approaches to merge these two layers in a
unified manner is recognized as a fundamental, albeit difficult
challenge.

Here, we revisit the classical Michaelis–Menten equation under
the assumption of a time-dependent enzyme concentration. We
first summarize our results from an earlier study [14], showing
that, for an isolated reaction obeying Michaelis–Menten kinetics,

the final substrate concentration depends not on the time-depen-
dent details of enzyme concentration, but simply on its average. In-
deed, any two enzyme profiles with the same average
concentration and identical kinetic parameters yield the same final
substrate concentration.

Next, we show how this ‘‘average enzyme principle’’ can be ex-
tended to more complex metabolic networks. This is best illus-
trated through the example of a linear metabolic pathway, which
can be simulated numerically, and which helps formulate the prob-
lem in a way that is amenable to analytical proof. We prove that if
all enzymes in the pathway follow the same dynamics, the final
concentration of metabolites in the pathway depends only on the
average enzyme level during the elapsed time. Importantly, the
invariance to enzyme trajectories remains valid for a much broader
category of metabolic networks whose constituent enzymes follow
synchronous time-courses.

2. Results

Consider the following problem: a substrate S is degraded by an
enzyme E. How much substrate is left after a given time DT? Under
appropriate conditions and assumptions [15,16] the answer can be
computed using the hundred-year-old Michaelis–Menten equation

dS
dt
¼ �kcatES

KM þ S
ð1Þ
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As in most descriptions of enzymatic catalysis, the total amount of
enzyme is assumed to be constant. Hence, an expression for the fi-
nal concentration of substrate can classically be obtained by
integrating:
Z Sf

S0

ðKM þ SÞdS
S

¼
Z DT

0
�kcatEdt ð2Þ

These integrals can be evaluated explicitly, yielding the result

Km ln
Sf

S0
þ Sf � S0 ¼ �kcatEDT ð3Þ

Thus, we can express the final concentration of the substrate as a
function of its initial concentration, the time interval of interest,
and the relevant enzymatic parameters. Note that while Eq. (3) con-
stitutes an implicit function of Sf, an explicit expression can be ob-
tained using the Lambert W function [17].

What if we pose the same problem, but assume that the enzyme
concentration is instead a time-dependent quantity E(t)? Can we
still easily compute the amount of substrate left after a given time
DT? Behind the apparently open-ended challenge of addressing
this question lies a simple answer, potentially rich of biological
implications.

Under appropriate conditions [14], and in line with studies of
hybrid metabolic-genetic systems [18,19], we can write the
Michaelis–Menten equation in which the enzyme concentration
is a time-dependent variable:

dS
dt
¼ �kcatEðtÞS

KM þ S
ð4Þ

Eq. (4) is still separable; in other words, enzyme concentration can
be still isolated from the terms corresponding to substrate, yielding
upon integration:

Km ln
Sf

S0
þ Sf � S0 ¼ �kcat

Z DT

0
EðtÞdt ¼ �kcatDTEavg ð5Þ

where Eavg is the average enzyme level during the time interval [0,
DT]. Eq. (5) states that the final concentration of substrate depends
only on the average concentration of enzyme in a time interval,
rather than its kinetic details.

The potential implications of this simple result may best be seen
by illustrating it in the following alternative way: if two enzyme
time-course profiles E1 and E2 exhibit the same average enzyme con-
centration at timeDT (i.e.

R DT
0 E1ðtÞdt ¼

R DT
0 E2ðtÞdt), the metabolic ef-

fects of these two enzymes are indistinguishable from each other at
time DT. In other words, in order to degrade a certain amount of sub-
strate S, any one of an infinite number of equivalent enzyme trajec-
tories with identical averages may be used. While the validity of this
statement should be apparent from the analytical nature of this re-
sult, a simple experimental assay reported earlier should relieve any
further doubts [14]. As we explore in detail in [14], one consequence
of this multiplicity of solutions is the possibility of identifying a
trajectory that minimizes the cost a cell incurs when sequestering
cellular resources for the production/degradation of enzyme.

Here we wish to show that this average enzyme principle holds
not only for a single enzyme-catalyzed reaction, but also for a
broad category of multi-step metabolic pathways, under certain
assumptions on the time-dependence of the enzymes in the path-
way. It is not obvious that the principle should extend: because the
dynamics of each metabolite will depend on other metabolites in
the network, it is not possible to simply integrate over time, as
was done in the single-reaction case above.

The simplest case, which we examine in detail, is the one of a
linear metabolic pathway of n metabolites in which the product
of one reaction is the substrate for the next one. The dynamics of
such a system is described by the following differential equations:

dS1

dt
¼ �E1ðtÞ

k1S1

KM;1 þ S1

� �
ð6Þ

dSi

dt
¼ Ei�1ðtÞ

ki�1Si�1

KM;i�1 þ Si�1

� �
� EiðtÞ

kiSi

KM;i þ Si

� �
; i ¼ 2 . . . n ð7Þ

where Si corresponds to the ith substrate in the pathway, ki is the
rate constant of the ith reaction, and KM,i is the half-saturation con-
stant of the ith reaction. We assume that all enzymes vary synchro-
nously in time (c1E1(t) = c2E2(t) = . . . = cnEn(t), where each ci is a
positive constant). This assumption is reasonable for metabolic
pathways (such as many linear ones) whose enzymes are co-regu-
lated and exhibit similar time-dependent expression profiles
[20,21]. A numerical solution of these equations shows that, for dif-
ferent enzyme time-courses with identical averages at time DT,
metabolite concentrations at time DT are precisely identical
(Fig. 1), exactly as in the case of a single enzyme.

The numerical result above is just a special case of a much more
general analytical result, which we derive next. We start by writing
the differential equations for a metabolic network comprised of n
metabolites, denoted by the vector (S1,S2, S3, . . . Sn) = S. We assume
that each reaction in the network can be effectively described by
irreversible Michaelis–Menten equations (as in Eqs. (6) and (7)).
We further assume that all enzymes in the network have the same
dependence on time (again, that c1E1(t) = c2E2(t) = . . . cnEn(t)).

Then, using vector notation, we can write the differential equa-
tions for such as a system as

dS
dt
¼ EðtÞf ðSÞ ð8Þ

where the bold lettering denotes a vector. Note that f is a vector-
valued function, which takes as input the vector of substrate con-
centrations, and outputs a vector of the same dimension. Because
each individual ci (the parameter corresponding to the scaling of
each enzyme) is a fixed constant, it can be directly absorbed into
the expression for f. Now, let us consider the dynamics of the sys-
tem above for two different enzyme time-courses, EA(t) and EB(t),
with the same average concentration at time DT (i.e.R DT

0 EBðtÞdt ¼
R DT

0 EAðtÞdt)). We will show that the final concentration
of each metabolite Si at time DT is identical for the two enzyme time
courses. To see this, let us make a change of variables by letting

sA ¼
Z t

0
EAðxÞdx ð9Þ

sB ¼
Z t

0
EBðxÞdx ð10Þ

Note that at t = DT, sA and sB are equal (by our assumption of equiv-
alent average enzyme levels). Then, we can use the chain rule and
the Fundamental Theorem of Calculus to rewrite the system in
Eqs. (9) and (10) as

dS
dsA
¼ dt

dsA

dS
dt
¼ 1

EAðtÞ
EAðtÞf ðsÞ ¼ f ðSÞ ð11Þ

dS
dsB
¼ dt

dsB

dS
dt
¼ 1

EBðtÞ
EBðtÞf ðsÞ ¼ f ðSÞ ð12Þ

Eqs. (11) and (12) can be interpreted as a re-scaling of the time var-
iable. Then, since the form of Eqs. (11) and (12) is identical, they
have identical solutions, except in differently scaled time variables.
However, at time DT; sA ¼

R DT
0 EAðxÞdx ¼

R DT
0 EBðxÞdx ¼ sB and the

solutions (i.e. the concentrations of substrate) are identical. Notably,
an identical rescaling argument holds for any metabolic network
that can be written in the form of Eq. (8). For any such metabolic
network, including those with higher-order stoichiometry, branch-
ing, cooperativity, reversibility, and allosteric regulation, an

2892 E. Reznik et al. / FEBS Letters 587 (2013) 2891–2894



Download English Version:

https://daneshyari.com/en/article/10870877

Download Persian Version:

https://daneshyari.com/article/10870877

Daneshyari.com

https://daneshyari.com/en/article/10870877
https://daneshyari.com/article/10870877
https://daneshyari.com

