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a b s t r a c t

The rank product method is a widely accepted technique for detecting differentially regulated genes
in replicated microarray experiments. To approximate the sampling distribution of the rank product
statistic, the original publication proposed a permutation approach, whereas recently an alternative
approximation based on the continuous gamma distribution was suggested. However, both approx-
imations are imperfect for estimating small tail probabilities. In this paper we relate the rank prod-
uct statistic to number theory and provide a derivation of its exact probability distribution and the
true tail probabilities.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

The rank product method is a popular non-parametric tech-
nique introduced by Breitling et al. [1] for identifying differentially
expressed genes using data from replicated microarray experi-
ments. It has also been widely applied to other post-genomic data-
sets that generate replicated rankable scores, for example in
proteomics and metabolomics [3–5]. The method entails ranking
genes according to their differential expression within each repli-
cate experiment and subsequently calculating the product of the
ranks across replicates. An important next step is to compare the
observed rank products to their sampling distribution under the
null hypothesis that the differential expression values are identi-
cally distributed (i.e., statistically exchangeable) within each of
the independent experiments. Breitling et al. [1] proposed a per-
mutation sampling procedure to approximate this distribution,
whereas Koziol [2] recently suggested an alternative approxima-
tion based on the continuous gamma distribution. The latter cau-
tions, however, that both permutation re-sampling and the
gamma approximation fail to provide accurate estimates of the ex-
treme tail probabilities of the rank product statistics.

This note provides a combinatorial exact expression for calcu-
lating the probability mass function of the rank product statistic
and the exact P-values based on the fundamental theorem of arith-
metic. The underlying method has previously been suggested by
Lehner et al. [6] in a different research area, but their expression
is exact only for the restricted case that the rank product is not lar-
ger than the number of genes in the array. In this paper, we remove
this restriction, making the resulting counting method generally
applicable to the analysis of microarray and other data. Our
numerical example shows that the exact probability mass function
offers an improvement over the continuous gamma approxima-
tion, which tends to understate the evidence against the null
hypothesis, and permutation. This improvement is important for
the application of the rank product method in all areas of biological
data analysis, as the main interest is typically directed towards the
tail of the distribution, that is, the detection of ‘‘significantly chan-
ged’’ genes, proteins or metabolites.

2. Rank product analysis

Suppose we have differential expression data for a total of n
genes from k replicated experiments, with all replicates measuring
the same number of genes. The underlying distribution of the dif-
ferential expression values themselves is unknown, prohibiting the
calculation of the probability distribution of the raw expression
data. For this reason, each measurement of the differential
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expression for the ith gene in the jth replicate is replaced with its
rank, 1 6 i 6 n, 1 6 j 6 k. The most strongly up-regulated gene in
each replicate is assigned rank 1 and the most strongly down-reg-
ulated gene is assigned rank n, giving k sets of ranks, denoted rij,
1 6 rij 6 n. Assuming no ties, each rank occurs once and only once
in each replicate.

For each gene i we have a rank tuple fri1; . . . ; rikg, and rank prod-
uct analysis intends to examine those tuples where all of the ranks
are sufficiently small. The individual rank scores rij can be used as a
test statistic for the null hypothesis that a gene is not significantly
regulated against the alternative that it is differentially expressed,
yielding a P-value given by PðR 6 rijÞ ¼ rij=n. Rank product anal-
ysis aims to integrate the evidence from k independent biological
replicates to provide a P-value for the overall test that all k single
null hypotheses are true.

In line with Fisher’s [7] method, the rank product approach to
combining the individual P-values is to obtain the product of the
ranks for gene i over the independent replicates k, i.e.,
rpi ¼

Qk
j ¼ 1rij. The observed rank product is then compared to

the sampling distribution of the rank product values under the
overall null hypothesis that the expression levels are identically
distributed within each of the k independent replicates. Assessing
the statistical significance, or P-value, of the observed expression
changes therefore relies on the ability to obtain this null distribu-
tion accurately. In the original publication, Breitling et al. [1] pro-
posed to obtain an approximate distribution under the condition
that all the null hypotheses are true by permutation re-sampling.
This strategy requires a computationally demanding large number
of permutations to get reliable estimates of the P-values at the tails
of the distribution, that is, for the most significantly changed genes.
Therefore, an analytical approach for calculating the distribution
without requiring permutations was desirable. Hereafter, for nota-
tional convenience, we will drop all reference to the symbol i and
consider how to make probability calculations using the gamma
approximation and exact calculation.

3. Gamma approximation for rank products

In [2], Koziol argues that under the null hypothesis rj=ðn þ 1Þ is
approximately uniformly distributed on the interval [0,1] and he
uses this argument to propose a continuous gamma distribution
approximation for the log-transformed rank products,
z ¼ � log ðrp=½n þ 1�kÞ.

If the P-values rj=ðn þ 1Þ are uniform and continuous on the
unit interval [0,1], the probability distribution of
wj ¼ � log ðrj=½n þ 1�Þ is given by the exponential distribution
pðwjÞ ¼ e�wj with scale parameter 1, denoted as Exp(1). Given that
wj is distributed as Exp(1), the sum of wj over k independent rep-
licates has a gamma ðk;1Þ distribution, i.e., pðzÞ ¼ CðkÞ�1 zk�1e�z;

where z ¼
Pk

j ¼ 1wj [see 2,6,8]. Koziol [2] shows that the empirical
distribution of the log-transformed rank product values is well-
approximated by the continuous gamma ðk;1Þ distribution over
the (almost) entire range of support. He urges, however, that esti-
mation of small tail probabilities of the rank products from the
gamma approximation is imprecise.

The reason for the deviation is that the rank products take dis-
crete values on the real number line, i.e., 1;2;3; . . . ;nk, whereas the
continuous gamma distribution allows all non-negative real num-
bers. The deviations are most prominent if the rank products are
small, hence at the right tail of the distribution. Below we will give
an example that illustrates the difference between the true P-value
and the approximate P-value based on the gamma ðk;1Þ probabil-
ity density function.

4. Exact distribution of rank products

To overcome the limitations of the approximation strategies, re-
call that the rank products have a probability mass function. This
function gives the probability that a discrete random variable RP
is exactly equal to some value rp: This probability, denoted
PðRP ¼ rpÞ; can be obtained by calculating the total number of
ways to get rp by multiplying k integers (number of replicates) be-
tween 1 and n (number of genes), and dividing the result by nk. One
approach to this counting problem is using a for loop. That is, run k
nested loops from 1 to n, most efficiently by the divisors of rp, and
count the number of times the resulting product equals rp. This
brute-force search performs well, but it becomes computationally
time consuming if either n or k or both are large. The more so, if
in addition to the probability the P-value of large rank products
is required.

An alternative calculation relies on the fundamental theorem of
arithmetic also known as the unique-prime-factorization theorem
[9,10]. This theorem states that every positive integer (except the
number 1) has a unique prime-factorization implying that it can
be presented in exactly one way as a product of powers of primes.
For the problem at hand, this implies that every rank product rp
greater than 1 is either prime itself or is the product of primes,
i.e., rp ¼ pa1

1 . . . pam
m ; where p1 < p2 < . . . pm are distinct primes

and the prime exponents at are non-negative integers. Obviously,
the same goes for the divisors d of rank product rp.

We denote by Hðrp; k;nÞ the total number of representations of
rank product rp as an ordered product of k ranks smaller than or
equal to n. That is, two representations of rp are identical only if
they contain the same ranks in the same order. We also assume
by definition that Hð1; k;nÞ ¼ 1.

In their discussion of rank statistics, Lehner et al. [6] have
shown that we can enumerate the number of ordered k-tuples
such that their product equals rp; using

Hðrp; k;nÞ ¼
Ym

t ¼ 1

at þ k � 1
k � 1

� �
if rp 6 n:

The computation of Hðrp; k;nÞ is an application of the so-called
Piltz divisor function [11, see also Sloane’s (A007425) at http://oei-
s.org/A007425], and intimately related to the study of ordered fac-
torizations of integers [12]. For a proof see Nathanson [10],
Theorem 7.5, and Lehner et al. [6]. The above expression for
Hðrp; k;nÞ is a valid method for counting the representations of rp
as long as the rank product is less than or equal to the number
of genes. The function is then independent of n, and it offers the to-
tal number of ways of writing rp as an ordered product of k ranks.

This counting formula may occasionally be appropriate for
examining top-lists of most up-regulated genes, if n is large and
the number of replicates is small. But in many biological applica-
tions, with several replicates and noisy data, for many genes rp will
be larger than n; possibly even for strongly differentially expressed
genes. If that is the case, the above expression for Hðrp; k;nÞ is in-
valid, as it includes rank tuples with rank values that are larger
than n: Obviously, such rank tuples are impossible in replicates
with n genes.

Let dg be a divisor of rp that is larger than n, where g ¼ 1; . . . ;v :
To obtain a generic formula that is valid for all possible rank prod-
uct values, we express Hðrp; k;nÞ in terms of functions Hð�; �;1Þ as

Hðrp; k;nÞ ¼
Xk

s ¼ 0

X
b:
P

g
bg ¼ s

ð�1Þs
k

s

� �
s

b1; . . . ;bv

� �

� H ðrp=
Y

g

dbg
g ; k� s;1Þ;
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