





journal homepage: www.FEBSLetters.org

# Caveolin-1 up-regulates integrin $\alpha$ 2,6-sialylation to promote integrin $\alpha$ 5 $\beta$ 1-dependent hepatocarcinoma cell adhesion



Shengjin Yu<sup>1</sup>, Jianhui Fan, Linhua Liu, Lijun Zhang, Shujing Wang\*, Jianing Zhang\*

Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning Province, China

#### ARTICLE INFO

Article history: Received 9 November 2012 Revised 1 February 2013 Accepted 3 February 2013 Available online 14 February 2013

Edited by Lukas Huber

Keywords: Caveolin-1 α2,6-Sialylation Integrin Extracellular matrix

#### ABSTRACT

The alterations of integrin glycosylation play a crucial role in tumor metastasis. Our previous studies indicated that caveolin-1 promoted the expression of the key  $\alpha 2,6$ -sialytransferase ST6Gal-I and fibronectin-mediated adhesion of mouse hepatocarcinoma cell. Herein, we investigated the role of  $\alpha 2,6$ -sialylated  $\alpha 5$ -integrin in the adhesion of mouse hepatocarcinoma H22 cell. We demonstrated that caveolin-1 up-regulated cell surface  $\alpha 2,6$ -linked sialic acid via stimulating ST6Gal-I transcription. Cell surface  $\alpha 2,6$ -sialylation was required for integrin  $\alpha 5\beta 1$ -dependent cell adhesion to fibronectin, and an increase in  $\alpha 2,6$ -linked sialic acid on  $\alpha 5$ -subunit facilitated fibronectin-mediated focal adhesion kinase phosphorylations, suggesting that  $\alpha 2,6$ -sialylated  $\alpha 5$ -subunit promoted integrin  $\alpha 5\beta 1$ -dependent cell adhesion.

© 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

#### 1. Introduction

Extracellular matrix (ECM) is an important regulator of cell behaviours and microenvironment and consists of many molecules, such as fibronectin (Fn), collagen (Col), laminin (Ln), proteoglycans and non-matrix proteins [1]. Enhanced tumor cell adhesion to ECM is a key step to induce cell invasion in tumor metastasis [2]. Integrins are transmembrane glycoproteins that form non-covalent heterodimers composed of  $\alpha\text{-}$  and  $\beta\text{-}subunits.$  Members of integrin family are the major cell surface receptor for ECM and play a crucial role in mediating cell-ECM interactions during cell proliferation, development and tumor malignant behaviours [3]. Glycosylation, as a post-translational modification reaction, is tissue specific and developmentally regulated by the activity of glycosyltransferases and glycosidases. Although integrin-dependent cell adhesion is based on the binding of integrin to defined peptide sequence of ECM protein, this interaction is regulated by various factors including glycosylation modification [4].

Caveolin-1 (Cav-1) is identified as a major structural protein of caveolae and is implicated in lipid transport, signal transduction and tumor progression [5]. Current studies demonstrated that Cav-1 positively regulated tumor growth and metastatic ability

in hepatocellular carcinogenesis (HCC) [6–9]. There is accumulating evidence that Cav-1 may participate in the regulation of glycosylation modification. Cav-1 could mediate the subcompartmental localization of glycosyltransferase N-acetylglucosaminyltransferase III in Huh6 cell [10].  $\alpha 2$ ,6-Linked sialic acid is catalyzed by  $\beta$ -galactoside:  $\alpha 2$ -6-sialyltransferase 1 (ST6Gal-I), which adds sialic acid attached to Gal $\beta$ 1-4GlcNAc in a  $\alpha$ 2,6 linkage. Elevated levels of ST6Gal-I and  $\alpha$ 2,6-linked sialic acid had been observed in carcinomas of cervix, brain and liver [11–13]. However, the regulation mechanisms and roles of aberrant  $\alpha$ 2,6-sialylation in HCC progression are poorly understood.

H22 is a mouse hepatocarcinoma cell line with high metastasis potential. Our present study found that knockdown of Cav-1 in H22 cells down-regulated cell surface  $\alpha 2,6$ -linked sialic acid through inhibiting ST6Gal-I transcription, which could be restored by the reintroduction of wild-type Cav-1. Cell surface  $\alpha 2,6$ -sialylation-induced enhancement of cell adhesion to Fn was strongly suppressed by function-blocking antibody against  $\alpha 5$ - or  $\beta 1$ -subunit. Furthermore, an increase in  $\alpha 2,6$ -linked sialic acid on  $\alpha 5$ -subunit up-regulated the Fn-mediated focal adhesion kinase (FAK) phosphorylations.

#### 2. Materials and methods

#### 2.1. Cell culture

Mouse hepatocarcinoma cell line H22 was obtained from Cell Center of Peking Union Medical University (Beijing) and maintained in Rosewell Park Memorial Institute (RPMI) 1640 medium

<sup>\*</sup> Corresponding authors. Address: Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, No. 9 Western Section, Lvshun South Road, Dalian 116044, Liaoning Province, China. Fax: +86 411 86110378.

 $<sup>\</sup>label{lem:eq:composition} \textit{E-mail addresses:} \ wangshujing 82101@sina.com \ (S. Wang), \ jnzhang@dlmedu.edu.cn \ (J. Zhang).$ 

<sup>&</sup>lt;sup>1</sup> Current address: Department of Basic Medical Sciences, Medical College of Eastern Liaoning University, Dandong 118000, Liaoning Province, China.

(Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Gibco) under a humidified atmosphere of 95% air and 5% CO<sub>2</sub>.

#### 2.2. Construction of RNA interference vector and transfection

Three Cav-1-specific small hairpin RNA (shRNA) sequences used in the construction of RNA interference (RNAi) vector were as follows, shRNA-1: 5'-CACCGTACCTGAGTCTCCAGAAATTCAAGAGATTT CTGGAGACTCAGGTACTTTTTTG-3' and 5'-GATCCAAAAAAGTACCTG AGTCTCCAGAAATCTCTT GAATTTCTGGAGACTCAGGTAC-3'; shRNA-2: 5'-CACCGCCACTCAGCAACTGAATGA TTCAAGAGATCATTCAGTTG CTGAGTGGTTTTTTG-3' and 5'-GATCCAAAAAACCACTCAGCAA CTGAATGATCTCTTGAATCATTCAGTTGCTGAGTGGC-3': 5'-CACCGTACCTGAGTCTCCAGAAATT CAAGAGATTTCTGGAGACTCA GGTACTTTTTG-3' and 5'-GATCCAAAAAAGTACCTGAGTCTCCAGA AATCTCTTGAATTTCTGGAGACTCAGGTAC-3'. Three shRNAs were annealed and ligated into pGPU6 vector (GenePharma) to generate shRNA constructs (shCav-1-1, shCav-1-2 and shCav-1-3), respectively. Negative control shRNA construct (shNC) was used as a control. H22 cells were transfected with the mixture of plasmids and Lipofectamine™ 2000 (Invitrogen) according to manufacturer's recommendation.

#### 2.3. Construction of rescue vector and transfection

Construction of expression vector encoding wild-type Cav-1 or ST6Gal-I had been described previously [14]. Rescue vectors were transfected into Cav-1 knockdown H22 cells, respectively. After 48 h transfection, Cav-1- and ST6Gal-I-rescued cells were used to perform the following assays.

### 2.4. Construction of luciferase reporter vector, transfection and promoter activity assay

The transcriptional start site for mouse ST6Gal-I gene was retrieved from UCSC Genome Browser (http://genome.ucsc.edu). A 2000-bp region upstream of the transcriptional start site was subcloned into pGL3-basic vector (firefly luciferase reporter vector) (Promega) to generate pGL3-basic/ST6Gal-I vector. The pGL3-basic/ST6Gal-I construct and control plasmid pRL-TK (Promega), which expresses *Renilla* luciferase under the control of TK promoter, were cotransfected into negative control, three Cav-1-shRNA and wild-type Cav-1-rescued transfectants by using Lipofectamine™ 2000 (Invitrogen), respectively. After 24 h transfection, firefly luciferase and *Renilla* luciferase activities were measured using Dual-Luciferase Assay Kit (Promega) as described by manufacturer. Firefly luciferase activities were normalized against the *Renilla* luciferase activities.

#### 2.5. Real-time PCR analysis

Real-time PCR was performed as described previously [14]. Relative Cav-1 and ST6Gal-I mRNA levels were normalized with GAP-DH and calculated using  $2^{-\Delta\Delta CT}$  method.

#### 2.6. Western blot analysis

Protein concentration was measured with BCA assay kit (Pierce). Equal amounts of denatured proteins were subjected to 10% SDS-PAGE and blotted onto nitrocellulose membranes (Pall Corporation). Antibodies against  $\alpha 5$ -subunit,  $\beta 1$ -subunit, Cav-1, ST6Gal-I, FAK, phosphorylated FAK (p-FAK), paxillin, p-paxillin, ERK1/2, p-ERK1/2 and GAPDH (Santa Cruz Biotech Inc.) were used as the primary antibodies. The detection was performed using ECL kit (Amersham Biosciences) according to manufacturer's instruc-

tions. Relative amount of protein was determined by densitometry using LabWorks software.

#### 2.7. Lectin blot analysis

Cells were harvested, rinsed with PBS, and lysed with Proteo-Prep® Membrane Extraction Kit (Sigma–Aldrich). The lysates containing equal amounts of denatured proteins were subjected to 8% SDS–PAGE and transferred to nitrocellulose membranes. The identification was performed with 2  $\mu$ g/ml biotinylated *Sambucus nigra* (SNA) lectin (Vector Laboratories, Inc.), which preferentially recognizes sialic acid attached to terminal galactose in a  $\alpha$ 2,6-linkage. The blots were developed using ECL detection system (Amersham Biosciences).

#### 2.8. Flow cytometry analysis

Cells were blocked with PBS containing 1% bovine serum albumin (BSA), and then incubated with 2  $\mu$ g/ml FITC-conjugated SNA lectin for 30 min on ice. For the analysis of  $\alpha$ 5- or  $\beta$ 1-subunit, cells were treated with the primary antibody against  $\alpha$ 5- or  $\beta$ 1-subunit for 1 h on ice, and then incubated with FITC-conjugated goat antirabbit IgG for 1 h on ice. After washing thrice with PBS, cells were analyzed using a FACScan instrument (BD Biosciences).

#### 2.9. Immunoprecipitation and Western blot

Cells were lysed with ProteoPrep® Membrane Extraction Kit (Sigma–Aldrich). Protein concentration was measured with BCA assay kit (Pierce). The lysates containing equal amounts of proteins were incubated with 2  $\mu$ g of anti- $\alpha$ 5 subunit antibody and then with 50  $\mu$ l protein A-agarose beads (Invitrogen). Immunoprecipitates were subjected to 8% SDS–PAGE and transferred to nitrocellulose membranes. The blots were probed with biotinylated SNA lectin and anti- $\alpha$ 5 subunit antibody, respectively, and developed using ECL detection system (Amersham Biosciences).

#### 2.10. Cell adhesion assav

Cell adhesion assay was performed as described previously [14]. For adhesion inhibition assays, cells were pre-incubated with control IgG (5  $\mu g/ml$ ), EDTA (5 mM), function-blocking anti- $\alpha 5$  or anti- $\beta 1$  subunit antibody (2.5  $\mu g/ml$  or 5  $\mu g/ml$ ) for 20 min at room temperature before inoculation.

#### 2.11. Statistical analysis

The data were expressed as the mean  $\pm$  S.E. Statistical analysis was performed with SPSS 13.0 software. One-way ANOVA with post hoc Tukey's test was performed for experiments that involved more than two groups, and Student's t-test was performed for comparisons between two groups. P < 0.05 was considered to be statistically significant.

#### 3. Results

3.1. Knockdown of Cav-1 in H22 cells reduces cell surface  $\alpha$ 2,6-linked sialic acid via down-regulating ST6Gal-I transcription

To investigate a possible relationship between Cav-1 and cell surface  $\alpha 2$ ,6-sialylation, we developed three shRNA interference vectors (shCav-1-1, shCav-1-2 and shCav-1-3) to silence Cav-1 expression in H22 cells, respectively. Cav-1 and ST6Gal-I expression were suppressed in different Cav-1-shRNA transfected cells (Fig. 1A and B), and shCav-1-1 transfectant exhibited a weaker

### Download English Version:

## https://daneshyari.com/en/article/10870988

Download Persian Version:

https://daneshyari.com/article/10870988

<u>Daneshyari.com</u>