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Multiscale simulation of microbe structure and dynamics
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a b s t r a c t

A multiscale mathematical and computational approach is developed that captures the hierarchical
organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms
of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom
description and terminates with order parameters characterizing a whole microbe. This conceptual
framework is used to guide the analysis of the Liouville equation for the probability density of the
positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale
mathematical techniques, we derive equations for the co-evolution of the order parameters and the
probability density of the N-atom state. This approach yields a rigorous way to transfer information
between variables on different space-time scales. It elucidates the interplay between equilibrium and far-
from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-
grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-
energy minimizing structures, many of which are typically supported by the set of macromolecules and
membranes constituting a given microbe. This suite of capabilities provides a natural framework for
arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data,
and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected
features of the methodology are demonstrated using our multiscale bionanosystem simulator Deducti-
veMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the
cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to
human papillomavirus, and iron-binding protein lactoferrin.

� 2011 Elsevier Ltd. All rights reserved.

1. Background

Microbes such as viruses and bacteria are organized hierarchi-
cally. For example, a virus is constituted of atoms assembled into
macromolecules which, in turn, constitute several substructures.
For a nonenveloped virus, the latter are genetic material and the
capsid. For an enveloped system such as dengue virus, there is an
outer protein net, a lipid zone, and an inner RNA-protein complex.
Accompanying this hierarchical organization is a spectrum of time
and length scales. The objective of this article is to present our
strategy for developing a theory that parallels the hierarchical
organization of microbes with a mathematical and computational
framework for efficiently modeling microbial systems.

Modern nanocharacterization experimental methodologies
make the development of microbial simulation approaches timely.
For example, Atomic Force Microscopy (AFM) is employed to
investigate a range of biological processes from unfolding of
a single molecule to nano-indentation of viruses (Brown et al.,
2007; Florin et al., 1994; Roos et al., 2010). A standard AFM can
scan a sample more than 10 thousand times per second, yielding an
ensemble measurement that parallels a statistical mechanical
approach. Thus, to model such experiments computationally,
a framework is needed that addresses structures in a range of sizes
from single macromolecules to viruses and bacteria, without losing
information at any time or length scale.

Nanotechnical methods for characterizing macromolecular
assemblies include AFM (Hinterdorfer and Dufrene, 2006), Ion
Mobility eMass Spectrometry (Bernstein et al., 2009; Ruotolo et al.,
2005; Uetrecht et al., 2010), chemical labeling (Beardsley et al.,
2006), and nanopore measurements (Zhou et al., 2008). While
these techniques provide information on structure, they are coarse-
grained in that they do not resolve all-atom configurations. X-ray
and electron microscopy provide detailed structure but do not
provide information on dynamics (Barthel and Thust, 2008; Gaffney
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and Chapman, 2007). Solid-state NMR techniques do provide an
ensemble of atom-resolved structures but cannot be used to give
overall structure for a macromolecular assembly (Dvinskikh et al.,
2006; McDermott, 2009; Svergun and Koch, 2003; Bauer et al.,
2011). Thus, we suggest that a method which integrates multiple
types of nano-characterization data with a predictive all-atom
simulation approach would greatly advance the understanding of
microbial systems; a preliminary approach of this type has been
presented earlier (Pankavich et al., 2008).

The above and other (D’Alfonso et al., 2010; Florin et al., 1994;
Goldstein et al., 2003; Lyon et al., 1998) experimental techniques
can be performed under variousmicroenvironmental conditions such
as salinity and pH. These variations modulate interactions between
solvent accessible parts of the microbe and host medium atoms,
inducing structural and functional changes of the former. For
example, viral RNA is found to be stable and facilitate encapsulation in
a 2:1 electrolyte due to “tight” electrostatic binding with Mg2þ ions,
but loses tertiary structure in a 1:1 electrolyte (Freddolino et al., 2006;
Singharoy et al., 2010b). An all-atom model is often essential to
correctly probe these interactions. Structural fluctuations and internal
dynamics are a central feature of several biological processes. For
example, in the presence of an energy barrier, the atomic fluctuations
allow self-organization of lipids in membranes (Sung and Kim, 2005).
Fluctuations are also important in expressing the conformational
diversity of macromolecules that allows for large deformations upon
drug binding (Rohs et al., 2005). Similarly, excessive fluctuations in
viral epitopes appear to diminish immune response (Joshi et al., under
review) andmay explain the dependence of immunogenicity on their
fluctuations (Nowak,1996). Thus, an all-atom description is necessary
to account for all sources of fluctuation in simulating aforementioned
processes, and hence has been the basis of traditional molecular
dynamics (MD) approaches (van Gunsteren and Berendsen, 1990).

All-atom MD simulations of macromolecular assemblies
involving more than a million atoms (such as a virus in an explicit
solvation environment) require large computational capabilities
and have been accomplished using more than 1000 processors for
a single time-course. To simulate viruses over microseconds on
such a platform would require engaging this many processors for
months (assuming the usual femto-second MD timestep). This
restricts traditional MD to less than 50 nm structures and hundred
nano-second timescales. Hence, incorporating information about
atomic processes into microbe modeling has been a challenge.
Billion-atom MD simulations have been accomplished (Abraham
et al., 2002; Ahmed et al., 2010; Sanbonmatsu and Tung, 2006,
2007; Schulz et al., 2009; Germann et al., 2005). However, these
simulations neglect Coulomb interactions, bonded forces, or the
rapidly fluctuating proton. All the latter are central to biomolecular
structure and dynamics. Thus, such billion-atom simulations
should not be viewed as the standard for microbial modeling.

Multiscale approaches have been developed to address the above
computational challenges. These methods yield insights into the
dynamics of a system as it simultaneously evolves across multiple
scales in space and time. By the definition adopted here, a multiscale
method simultaneously accounts for processes on a range of scales.
This scale bridging requires development of models for various scales
which are thermodynamically and structurally consistent with each
other (Noid et al., 2008a). For example, the deductive multiscale
methodology (Section 1.1) maintains the effect of all degrees of
freedom while greatly accelerating simulations. The advantages and
shortcomings of this and other methods are compared in Section 1.3.

1.1. Deductive multiscale analysis

Deductive multiscale analysis is a collection of concepts and
mathematical techniques for understanding the dynamics of

a complex system as derived from a primitive model cast at the
finest scale of interest. In essence, it adheres to the basic program of
statistical physics that started, for example, with Gibbs (Gibbs,
1981) and Liouville (McQuarrie, 1976). A goal of our studies is to
retain information on all scales simultaneously and capture the
dynamic cross-talk between processes on the relevant spectrum of
space-time scales. For example, overall viral structure affects
atomistic fluctuations. These fluctuations mediate the stability of
entire structure through the free-energy driving forces, illustrating
an interscale feedback underlying microbial processes.

The main steps in deductive multiscale analysis can be
summarized as follows:

1. The starting point is a primitive model that is cast in terms of
variables describing the systems at the shortest space-time
scale. For the present case, the fine-scale description is cast in
terms of the positions and momenta of all the atoms in the
system. This description is a viable starting point as it contains
much of the physics of biological systems and, through
deductive multiscaling, results in coarser-grained model which
needs minimal recalibration given an interatomic force filed
(e.g., CHARMM (MacKerell et al., 2001) or AMBER (Ponder and
Case, 2003)).

2. Deductive multiscaling then facilitates the identification of
coarse-grained variables (order parameters) that describe the
salient features of a system on longer space-time scales. For
microbial simulations, these order parameters (OPs) capture
overall structural information, e.g., the position, shape, size,
and orientation of major components of the microbe.

3. Deductive multiscaling provides criteria for determining the
completeness of the set of OPs (Section 2.4).

4. Rigorous Smoluchowski/Langevin equations for evolving the
OPs are then derived. These equations are stochastic because
the behavior of matter at the nanoscale is strongly influenced
by the fluctuating states of the atomic configurations. To
address this, deductive multiscaling yields the co-evolving
quasi-equilibrium ensemble for fine scale (atomistic) states
consistent with the instantaneous values of OPs. Thus, the all-
atom description of the system is retained.

In summary, deductive multiscaling is a method for deriving
equations capturing the two-way flow of information between
fine- and coarse-scale variables. With this, it probes the interplay of
far-from-equilibrium and equilibrium processes that underlies
many microbial behaviors. For example, much of the structure of
membranes and DNA or RNA corresponds to a free-energy mini-
mizing state. In contrast, the self-assembly of proteins and genetic
material into a virus, and the diffusion of molecules across
a membrane or within a cell, are far-from-equilibrium processes.
Deductive multiscaling provides a way to obtain the free-energy
gradients that drive the afore-mentioned processes.

1.2. Multiscale analysis

As the OPs evolve slowly in time, they change the conditions
determining the ensemble of all-atom configurations. Since atom-
istic variables change rapidly, the associated probability takes an
equilibrium-like form as suggested by the Gibbs-hypothesized
equivalence of long-time and thermal averages. This probability
then influences the factors in the equations of OP dynamics. The
resulting transfer of information from the OPs to the atomistic
configurations (characterized by the quasi-equilibrium probabili-
ties) and, in turn, back to the OPs, is summarized in Fig. 1. This
provides a natural way to transfer information between descrip-
tions at various scales that are rigorously derived from the

H. Joshi et al. / Progress in Biophysics and Molecular Biology 107 (2011) 200e217 201



Download English Version:

https://daneshyari.com/en/article/10883618

Download Persian Version:

https://daneshyari.com/article/10883618

Daneshyari.com

https://daneshyari.com/en/article/10883618
https://daneshyari.com/article/10883618
https://daneshyari.com

