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a  b  s  t  r  a  c  t

Artificial  signalling  networks  (ASNs)  are  a computational  approach  inspired  by  the  signalling  processes
inside  cells  that  decode  outside  environmental  information.  Using  evolutionary  algorithms  to  induce
complex  behaviours,  we  show  how  chaotic  dynamics  in  a conservative  dynamical  system  can  be  con-
trolled.  Such  dynamics  are  of  particular  interest  as they  mimic  the  inherent  complexity  of non-linear
physical  systems  in  the  real  world.  Considering  the  main  biological  interpretations  of  cellular  signalling,
in  which  complex  behaviours  and robust  cellular  responses  emerge  from  the  interaction  of  multiple
pathways,  we  introduce  two  ASN  representations:  a stand-alone  ASN  and  a  coupled ASN.  In  particular
we  note  how  sophisticated  cellular  communication  mechanisms  can  lead  to  effective  controllers,  where
complicated  problems  can  be  divided  into  smaller  and  independent  tasks.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Cellular signalling needs to engage in many forms of communi-
cation to enable cells to sense and respond to the outside world. This
capability is vital for cells to survive and adapt to constantly fluctu-
ating environments. In multicellular organisms, the role of cellular
signalling is especially significant as it is responsible for the coor-
dination of complex multicellular interactions and the production
of collective responses.

Broadly speaking, cellular signalling is a sequence of events trig-
gered by a biochemical signal that requires a cellular response.
Signalling pathways are the simplest cellular structures connect-
ing the outside environment with the genes they regulate. A closer
inspection reveals that cellular signalling starts when a surface
receptor binds an extracellular messenger, which diffuses an intra-
cellular signal to an effector protein inside the cell. This then
produces secondary messengers, which transmit the information
further into the cell along signalling pathways. Spatially or tem-
porally variable catalytic reactions or cascades of protein kinases
lead to changes in gene expression, bringing about a change in
cellular activity. Cells also show a complex internal organisation,
which regulates the number of cellular components activated by
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secondary messengers and guides the interactions between cellular
regions. Crosstalk (Schwartz and Baron, 1999) captures the inter-
action between signalling pathways that leading to the formation
of complex networks that produce a coordinated response.

In this paper, we extend our previous work on artificial
signalling networks (ASNs) (Fuente et al., 2012) and suggest the use
of crosstalk as a mechanism to model the structural and temporal
topologies of cellular signalling, capturing its intrinsic dynamics. In
order to test our model, we  apply it to the control of a numerical
dynamical system, whose properties mirror the complexity of the
cellular environment.

This paper is organised as follows: Section 2 presents a brief
overview of dynamical systems, Section 3 reviews the modelling of
ASNs, highlighting the challenges this involves, Section 4 presents
the new model and proposes the evolutionary algorithm used to
induce model instances, Section 5 presents results and analysis and
Section 6 concludes the paper.

2. Dynamical systems

A dynamical system is a mathematical model consisting of
a state space and a function, or evolution rule,  that specifies its
current state within the space state based on an initial condi-
tion (Stepney, 2011). The evolution rule defines the motion and
behaviour of the system across the state space. Dynamical systems
can be autonomous or non-autonomous. The former is a closed
system whose dynamics are not perturbed by the outside word.
The latter defines an open system changing over time, as inputs
are received from an external environment. Likewise, dynamical
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Fig. 1. Sampled trajectories of Chirikov’s standard map  using different values of k, showing the transition from the ordered to the chaotic state. Each map  is plotted using
400  randomly chosen initial points across the unit interval over 800 iterations.

systems can be discrete or continuous in time, depending on the
type of evolution rule: difference equations in the former and
differential equations in the latter.

Given a set of initial points within a discrete state space, the
evolution rule defines their trajectories as a sequence of states
over a period of time. A dynamical system where trajectories do
not contract to a limited region of the state space is known as a
conservative system.

Dynamical systems can display a wide range of behaviours.
The most interesting are those involving holistic irregular and
unpredictable properties; this atypical dynamism is known as
chaos. Despite being deterministic, chaotic systems display ape-
riodic behaviours characterised by an exponential sensitivity to
initial conditions and the existence of strange attractors. Whereas
the former suggests that small changes in the initial conditions

convey highly different trajectories throughout the state space, the
latter defines fractal and non-linear regions where trajectories may
converge.

2.1. Chirikov’s standard map

Chirikov’s standard map  (Chirikov, 1962) is a conservative and
discrete two-dimensional dynamical system representing itera-
tively the interactions of two canonical variables:

xn+1 = (xn + yn+1) mod  1

yn+1 = yn − k

2�
sin(2�xn)

(1)

One of the map’s main properties is its capacity to represent dif-
ferent dynamics as its nonlinearily increases. Thus, low values of k
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