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a  b  s  t  r  a  c  t

Mathematical  modeling  often  helps  to provide  a systems  perspective  on gene  regulatory  networks.  In par-
ticular, qualitative  approaches  are  useful  when  detailed  kinetic  information  is  lacking.  Multiple  methods
have been  developed  that  implement  qualitative  information  in different  ways,  e.g.,  in purely  discrete  or
hybrid discrete/continuous  models.  In  this  paper,  we compare  the  discrete  asynchronous  logical  model-
ing  formalism  for gene  regulatory  networks  due  to R. Thomas  with  piecewise  affine  differential  equation
models.  We  provide  a local  characterization  of  the qualitative  dynamics  of  a piecewise  affine  differen-
tial  equation  model  using  the  discrete  dynamics  of  a corresponding  Thomas  model.  Based  on this  result,
we  investigate  the  consistency  of  higher-level  dynamical  properties  such  as attractor  characteristics
and  reachability.  We  show  that  although  the  two approaches  are  based  on  equivalent  information,  the
resulting  qualitative  dynamics  are  different.  In  particular,  the  dynamics  of  the  piecewise  affine  differential
equation  model  is  not  a  simple  refinement  of the  dynamics  of the  Thomas  model
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1. Introduction

Gene regulation is the result of a complex interplay of molecular
components forming large interaction networks. In such a net-
work, there is a constant communication and interaction between
gene products affecting gene regulation and the regulated genes
altering the roles of the gene products. Mathematical modeling
of gene regulatory networks gives insights into the underlying
structure and dynamics of various biological systems. In partic-
ular, mathematical modeling can help to understand the cellular
processes and properties that make a cell adaptable to different
environments and conditions (see e.g. Ropers et al., 2011). If infor-
mation on kinetic parameters is lacking, qualitative formalisms offer
a well-established alternative to the more traditionally used dif-
ferential equation models. Using only qualitative information on
the network structure and the interactions between the compo-
nents, these approaches allow obtaining an abstract description of
the system’s dynamics.

The discrete formalism of Thomas (1973) and Thomas and D’Ari
(1990) is a qualitative method describing a gene regulatory network
by a discrete function. Each network component is represented by
a variable that takes integer values representing the different lev-
els of gene activity. The information on how the behavior of one
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component is governed by the values of the other components
is captured in a discrete function. The component functions then
constitute the coordinate functions of the update function of the
network. To derive the dynamics of the system, Thomas introduced
the asynchronous update method where only one variable changes
per discrete time step, and only by a unit value. Since the state space
is finite, the dynamics can be represented by a directed graph, the
so-called asynchronous state transition graph (STG).

The particularities of the asynchronous update method result
in a close correspondence of the discrete model to certain differen-
tial equation systems (Snoussi, 1989). Differential equation models
consisting of step functions retain a continuous time evolution, yet
can be seen as qualitative due to the close relation of step and dis-
crete functions. Such piecewise affine differential equation (PADE)
models approximate certain ordinary differential equation models
(Glass and Kauffman, 1972, 1973). de Jong et al. (2004) have shown
that they can essentially be captured by a discrete representation,
which abstracts the continuous solution trajectories of the differ-
ential equations into transitions between different regions of the
phase space. Again, the resulting dynamics can be represented by
a directed graph, the qualitative transition graph (QTG).

In this paper, we aim at clarifying the relation between Thomas
and PADE models by comparing the respective graphs capturing
the dynamical behavior. Several results in this direction already
exist. For example, attractors, including steady states and certain
limit cycles, are related (Glass and Kauffman, 1972; Snoussi, 1989;
Snoussi and Thomas, 1993; Chaves et al., 2010; Wittmann et al.,
2009). Our goal here is to present a comprehensive comparison
between the STG and the QTG.
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The paper is organized as follows. Section 2 presents a discrete
modeling approach based on the Thomas formalism. PADE systems
and the qualitative analysis developed by de Jong et al. (2004) are
introduced in Section 3. In Section 4, we start comparing the two
formalisms. Section 5 describes our main result characterizing tran-
sitions in the QTG using edges originating in corresponding vertices
in the STG. We  illustrate the application of this result with examples
of relations between paths and attractors in the two graphs. The
conclusion and perspectives for future work are given in Section 6.

This paper is the full version of an extended abstract included
in the proceedings of IPCAT 2012 (Jamshidi et al., 2012).

2. Discrete formalism

Consider a gene network with n regulatory components. In the
discrete modeling approach, the activity level of a component i is
modeled by a discrete variable qi, which takes its values in a finite
set of natural numbers Qi = {0, . . .,  pi}, pi ≥ 1. The state space of the
discrete model is Q = Q1 × · · · × Qn, and the regulatory interactions
are captured by a discrete update function f = (f1, . . .,  fn) : Q → Q. The
function f uniquely determines the state transition graph STG(f) = (Q,
E), a directed graph with node set Q and edge set E ⊂ Q × Q. For any
j ∈ {1, . . .,  n}, q ∈ Q with fj(q) /= qj, there is an edge (q, q′) ∈ E, where
q′

j
= qj + sgn(fj(q) − qj) and q′

i
= qi, for all i ∈ {1, . . .,  n} \ {j}. Here,

sgn : R  → {−1, 0, 1} denotes the sign function. If f(q) = q, then (q,
q) ∈ E and q is called a fixpoint.

Unless f is Boolean, it is not possible to recover f from G = STG(f).
However, we may  obtain from G a unitary update function fG : Q → Q
by setting

f G
j (q) = qj +

∑
q′∈AS(q)

(q′
j − qj), for j ∈ {1, . . . , n}.

Here AS(q) : = {q′ ∈ Q | (q, q′) ∈ E} denotes the set of asynchronous suc-
cessors of q in G.

Lemma  1. Let f : Q → Q be an update function and G = STG(f). Then

STG(f ) = STG(f G).

Proof. Let j ∈ {1, . . .,  n} and q ∈ Q. By definition of AS(q), there exists
at most one q′ ∈ AS(q) such that |q′

j
− qj| = 1. This implies sgn(fj(q) −

qj) = q′
j
− qj . Therefore, sgn(fj(q) − qj) =

∑
q′∈AS(q)(q

′
j
− qj), and the

result follows. �

The unitary update function fG captures the information from
the original update function f contained in G = STG(f). If f is Boolean,
f and fG are the same.

Example 1. For Q = {0, 1} × {0, 1, 2} and the update function
f : Q → Q

q 00 01 02 10 11 12

f(q) 12 12 11 00 10 11
the state transition graph STG(f) is displayed on the left of

Fig. 2(a).

While the discrete formalism of R. Thomas provides a rather
coarse representation of the dynamics of a gene regulatory net-
work, the more traditionally used differential equation models offer
a much more precise picture, which however requires detailed
knowledge on reaction kinetics and parameters. A nice intermedi-
ate formalism bringing together discrete and continuous aspects
is based on piecewise affine differential equations (Glass and
Kauffman, 1972, 1973).

3. Piecewise affine differential equations

In this section, we present piecewise affine differential equa-
tions (PADE) and the qualitative modeling approach introduced by
de Jong et al. (2004). While a number of refinements have been
proposed (Batt et al., 2008), we use here the original approach for
comparison with the Thomas formalism. Our focus will be on the
qualitative dynamics associated with a system of PADEs, i.e., the
discrete representation of all possible solution trajectories of the
PADEs satisfying certain parameter constraints.

Consider an n-dimensional phase space  ̋ = ˝1 × · · · × ˝n ⊂
R

n
≥0, where ˝i = {xi ∈ R  | 0 ≤ xi ≤ maxi}, and maxi ∈ R>0. For every

continuous variable xi ∈ ˝i we assume pi ∈ N  thresholds �1
i
, . . . , �pi

i
satisfying the ordering

0 < �1
i < . . . < �pi

i < maxi, for all i ∈ {1, . . . , n}. (1)

In the comparison with the discrete formalism in Section 2, the
value pi chosen here corresponds to the maximal value pi of the
component range Qi of a discrete model. The union of the threshold
hyperplanes is denoted by � := ⋃

i∈{1,...,n},ji∈{1,...,pi}{x ∈ ˝|xi = �ji
i
}.

We consider a set of PADEs in  ̋ \ � of the form

ẋi = Fi(x) − Gi(x)xi, i ∈ {1, . . . , n}, (2)

where the functions Gi : ˝\� → R>0 and Fi : ˝\� → R≥0 are lin-
ear combinations of products of step functions

S+(xl, �k
l ) =

{
0 if xl < �k

l
,

1 if xl > �k
l
,

and S−(xl, �k
l
) = 1 − S+(xl, �k

l
) for l ∈ {1, . . .,  n}.

To obtain a discrete representation of the PADE system, the state
space is partitioned into a set of domains.

Definition 1. Consider a set of PADEs of the form (2) with phase
space  ̋ and thresholds �j

i
. The (n − 1)-dimensional hyperplanes

corresponding to the equations xi = �j
i
, j ∈ {1, . . .,  pi}, divide ˝

into hyper-rectangular regions called domains. A domain D ⊂  ̋ is
defined by D = D1 × · · · × Dn, where every Di is given by one of the
following equations

Di = {xi | 0 ≤ xi < �1
i
},

Di = {xi | �k
i

< xi < �k+1
i

} for k ∈ {1, . . . , pi − 1},
Di = {xi | �

pi
i

< xi ≤ maxi},
Di = {xi | xi = �k

i
} for k ∈ {1, . . . , pi}.

By D  we denote the set of all domains in ˝.  A domain D ∈ D  is
called a singular domain, if there exists i ∈ {1, . . .,  n} such that Di =
{xi | xi = �k

i
} for some k ∈ {1, . . .,  pi}. The variable xi is then called

singular variable. The order of a singular domain is the number of
its singular variables. A domain D ∈ D  is called a regular domain,  if
it is not a singular domain. The set of regular and singular domains
are denoted by Dr and Ds respectively.

It follows immediately that for any regular domain D ∈ Dr ,
the functions Fi(x) and Gi(x) are constant on D. Thus (2) can be
written as a linear system ẋ = FD − GDx, for all x ∈ D, where GD =
diag(GD

1 , . . . , GD
n ) is a diagonal matrix with strictly positive entries

and FD = (FD
1 , . . . , FD

n ) a positive vector. It is easy to see that solu-
tions of (2) starting in a regular domain D converge monotonically
towards the so-called focal point �(D) : = (GD)−1FD.

In agreement with de Jong et al. (2004), we will assume that
all focal points lie in a regular domain. By definition of the reg-
ular domains, we can then encode the position of each focal
point by strict inequalities involving the threshold values and the
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