
BioSystems 110 (2012) 1– 8

Contents lists available at SciVerse ScienceDirect

BioSystems

journa l h o me pa g e: www.elsev ier .com/ locate /b iosystems

On the synthesis of DNA error correcting codes

Daniel Ashlocka,∗,1, Sheridan K. Houghtenb, Joseph Alexander Brownc, John Orthd

a Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
b Department of Computer Science, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
c School of Computer Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
d Department of Computer Science, Brock University, St. Catharines, Ontario, L2S 3A1, Canada

a r t i c l e i n f o

Article history:
Received 11 May 2011
Received in revised form 4 June 2012
Accepted 20 June 2012

Keywords:
Evolutionarycomputation
Bioinformatics
Representation
Error correcting code
Nucleic acids
Next-gen sequencing

a b s t r a c t

DNA error correcting codes over the edit metric consist of embeddable markers for sequencing projects
that are tolerant of sequencing errors. When a genetic library has multiple sources for its sequences,
use of embedded markers permit tracking of sequence origin. This study compares different methods
for synthesizing DNA error correcting codes. A new code-finding technique called the salmon algorithm
is introduced and used to improve the size of best known codes in five difficult cases of the problem,
including the most studied case: length six, distance three codes. An updated table of the best known
code sizes with 36 improved values, resulting from three different algorithms, is presented. Mathematical
background results for the problem from multiple sources are summarized. A discussion of practical
details that arise in application, including biological design and decoding, is also given in this study.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

An error correcting code is a collection of strings over a given
alphabet that are well separated from one another. The separation
property means that small numbers of errors in transmission of a
code word can be both detected (by noting that the word received is
not a code word) and corrected (by assuming the code word trans-
mitted is the one most similar to the one that was received). In
this study we are creating a code where the transmission channel
consists of incorporating the code word, in the form of an oligonu-
cleotide, as a label in a genetic construct and later reading it out
when the entire construct is sequenced. In this situation the Ham-
ming metric Gusfield (1997), which only counts substitutions, is
inappropriate because sequencers can skip a base or read one that
is not there. This means that codes relative to the edit metric or Lev-
enshtein distance Levenshtein (1966) are required for the detection
and correction of sequencing errors.

The edit distance between two words is the smallest number
of single character substitutions, insertions, or deletions that can
transform one string into the other. The edit metric is, in fact, a
metric in the mathematical sense Gusfield (1997). Edit metric codes

∗ Corresponding author. Tel.: +1 519 824 4120x53453; fax: +1 519 837 0221.
E-mail addresses: dashlock@uoguelph.ca (D. Ashlock), houghten@brocku.ca (S.K.

Houghten), jb03hf@gmail.com (J.A. Brown), jo05bi@brocku.ca (J. Orth).
1 The authors thank the National Science and Engineering Research Council of

Canada (NSERC) for supporting this work.

are startlingly unlike codes over the Hamming metric Campbell
(2005). Very little of the beautiful algebraic theory of Hamming
metric codes applies to edit codes. While the edit metric permits
code words with variable length, we will, for reasons of simplicity
in both coding and biological applications, work with code words
of a fixed length.

An (n, M, d)-code is a code with M members whose words are of
length n with pairwise minimum distance between code words of
d. In fact, in general, only a very small number of additional code
words may be obtained by permitting word length to vary Baker
et al. (2007). In essence, the longer words are spaced out from one
another more and so shorter words obstruct a far larger share of
the edit-metric space than longer words.

The first application of DNA-error correcting codes Qiu et al.
(2003) used the code words as embedded tracking labels in an
expressed sequence tag (EST) project in zea mays (corn). The bio-
chemistry used in the preparation of the genetic constructs used
in that project limited the codewords to a length of six. Since more
than twenty different genetic libraries were pooled, this meant that
a (6,M,3)-code was the logical choice, balancing number of code
words available with maximum possible error correction within
the resource constraint. Such a code corrects (3 − 1)/2 =1 error, a
number that was sufficient to recover 50% of the data in which
sequencing errors had made the source of the sequenced EST other-
wise unreadable. The advent of next-gen sequencing, with runs that
obtain millions of sequence reads, forms a new application domain
for application of error-correcting embedded sequence tags. This
new application domain motivates this manuscript which pulls

0303-2647/$ – see front matter © 2012 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.biosystems.2012.06.005

dx.doi.org/10.1016/j.biosystems.2012.06.005
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:dashlock@uoguelph.ca
mailto:houghten@brocku.ca
mailto:jb03hf@gmail.com
mailto:jo05bi@brocku.ca
dx.doi.org/10.1016/j.biosystems.2012.06.005

2 D. Ashlock et al. / BioSystems 110 (2012) 1– 8

together diverse research on the creation of error correcting tags
for genetic constructs. The practicality of including tags depends
on the size of the tag while its utility depends on the number of
errors the code can correct. The maximum size of a code with a
specified length and error correction capacity is a critical plan-
ning variable if such tags are to be incorporated in a sequencing
project. As before, error correcting tags will enhance the recovery
of information about the source of given sequences.

The first studies on edit metric error correcting codes used a
fitness function with exponential time complexity Ashlock et al.
(2002). This algorithm solved an immediate biological problem but
is computationally unsatisfying. This high time complexity was
acceptable only because a relatively short code (of length 6 and able
to correct a single error) was required. The algorithm used to find
these codes operates by evolving small collections of code words
called code seeds that are completed to a full code with a greedy
algorithm. If we view the greedy algorithm as a type of optimiza-
tion, then this algorithm is a Baldwinian one. The technical details
of this initial algorithm for finding edit metric codes appears in
Ashlock et al. (2002). The fitness of a code seed is the size of the
code located by the greedy algorithm starting with the seed. This
definition of fitness, resulting code size, is retained in the current
study.

In general, when we fix the length of the code words and the
number of errors that must be corrected, codes are better if they are
bigger (contain more code words). To understand why bigger codes
are better, consider the application of tagging biological constructs.
A larger code provides more available labels at a given level of error
correction and (word length based) difficulty of synthesis.

In Ashlock and Houghten (2009) the authors established that the
crossover operator in the original (code seed representation) evo-
lutionary algorithm was actually counterproductive and showed
enhanced performance with a crossover-free evolution strategy.
The lack of scalability of the code-seed representation led to the
development of a novel binary variation operator, one that is not
really a crossover operator. This new operator incorporates aspects
of both crossover and mutation and exploits the fact that the
order in which words are fed into the lexicode algorithm (Algo-
rithm 1) has a substantial impact on the size of the resulting code.
In a preliminary study Ashlock and Houghten (2005) a number of
forms of this variation operator were explored. The one exhibit-
ing best performance, a modified evolution strategy (ES), is used in
this study. It applies the new variation operator to code lengths
it had not been tested on previously. In Ashlock and Houghten
(2010) the new variation operator was tested in a spatially struc-
tured structured evolutionary algorithm called a ring optimizer
Ashlock and VonKonigslow (2008), Ashlock et al. (2008). The stan-
dard algorithm exhibited superior performance. In this study, the
ES is run for longer times on a broad variety of code parameters
and improves the known bound for thirteen different sets of code
parameters.

The most recently developed algorithm for searching for DNA
error correcting codes is the Salmon algorithm Orth and Houghten
(2011), inspired by the spawning behavior of salmon. This algo-
rithm is similar to ant colony optimization Dorigo and Stützle
(2004), except that the algorithmic analog of pheromones does
not evaporate. The algorithm is configured to search for cliques
in a graph with vertices that are strings in the DNA alphabet and
edges where pairs of words meet the minimum distance restriction
for a code. In Orth and Houghten (2011) the algorithm’s perfor-
mance was optimized on a single set of code parameters. In this
study we run the algorithm on several sets of code parameters.
The algorithm is memory intensive and so most useful to per-
form a thorough search for codes with relatively short word length.
Since these words are synthesized into biological constructs Qiu
et al. (2003), codes with short word length are the most useful in

applications. The algorithm improves the best known code size for
six different code parameters.

The remainder of this study is structured as follows. Section
2 gives mathematical background that permits us to leverage the
experimental information used to build the table of best code sizes.
Section 3 surveys the techniques used to locate large codes over the
DNA alphabet. Section 4 presents new best code sizes and a table
of best-known code sizes. Section 5 gives application notes and
discusses the results and future directions.

2. Mathematical background

Readers only interested in the application of DNA error correct-
ing codes may safely skip this section. It is included because it is
needed to justify many of the entries in Table 3 which gives the best
known sizes of codes for various lengths and minimum distances.

2.1. Preliminaries

Recall that an (n, M, d)q edit code is a q-ary code consisting of M
codewords each of which has length n, and in which all codewords
are at edit distance at least d from each other. This study focuses
primarily on DNA codes for which q = 4. Define Eq(n, d) to be the
maximum M for which there is an (n, M, d)q edit code. Such a code
is optimal if M = Eq(n, d).

2.2. Automorphism group and equivalence

The automorphism group of a q-ary edit code is described in
Houghten et al. (2006). In that paper words are described in terms
of their block structure. A block is defined as a maximal run of a
single character within a word. It is shown that the automorphism
group is dependent on the block structure of words, with the only
allowed operations being to simultaneously permute all symbols
of all words, or to simultaneously reverse all words. Two codes C1
and C2 are equivalent if one can be transformed into the other by
any combination of these operations. That paper also establishes
several relationships between different types of codes and between
different parameter sets.

2.3. Bounds on sizes of codes

The results in this section fill in gaps in the table of best known
code sizes by using knowledge of the size of a code for one param-
eter to estimate the size for another parameter.

2.3.1. Relationships to other types of codes

Definition 1. The insertion–deletion distance between two
strings is the minimum number of insertions and deletions needed
to transform one string into another. Insertion–deletion codes are
codes that use the insertion–deletion distance.

Observation 1. Since edit distance encompasses insertion–deletion
distance, the number of codewords M in an (n, M, d)q edit code cannot
exceed that in an optimal insertion–deletion correcting code of the
same parameters.

Observation 2. Since edit distance encompasses Hamming distance,
the number of codewords M in an (n, M, d)q edit code cannot exceed
that in an optimal Hamming distance code of the same parameters.

An implication of this observation is that one can use Hamming
distance, which is faster to compute than edit distance, as a bound-
ing function in the computation of edit distance. If two words are at
Hamming distance <d apart, then they are also at edit distance <d

Download English Version:

https://daneshyari.com/en/article/10884595

Download Persian Version:

https://daneshyari.com/article/10884595

Daneshyari.com

https://daneshyari.com/en/article/10884595
https://daneshyari.com/article/10884595
https://daneshyari.com

