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a  b  s  t  r  a  c  t

The  present  paper  introduces  a new  diffusion  process  for the  purpose  of  modelling  logistic-type  behaviour
patterns.  Unlike  other  processes  in  the same  context,  this  one  verifies  that its  mean  function  is a logis-
tic  curve.  In  addition,  its transition  density  can  be found  explicitly,  which  allows  to analyse  inference
from  the discrete  sampling  of trajectories.  The  main  features  of the  process  will be  analysed  and  the
maximum  likelihood  estimation  of  parameters  will  be  carried  out  through  discrete  sampling.  Regard-
ing  the  numerical  problems  found  to solve  the  likelihood  equations,  several  strategies  are  developed  for
obtaining  initial  solutions  for  the  usual  numerical  procedures.  Such  strategies  are  compared  by means  of
a  simulation  example.  Also,  another  simulation  study  is carried  out  in  order  to  compare  the  estimation
in  this  process  to  that  developed  by  means  of  continuous  sampling  in the  logistic  diffusion  model  con-
sidered  by  Giovanis  and Skiadas  (1999).  Finally  an  example  is  given  for  the  growth  of a microorganism
culture.  This  example  illustrates  the  predictive  possibilities  of  the  new  process,  as  well as its ability  to
study  time  variables  formulated  as  first-passage-times.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

For a long time the study of phenomena associated to growth
curves has drawn the attention of researchers. A wide range of
curves have been applied to a variety of scientific areas. Out of them,
the logistic curve has deserved special attention and has been the
genesis of many of the curves that appeared later (see Birch, 1999;
Tsoularis and Wallace, 2002).

The logistic curve was introduced by Verhulst in the XIX century,
for the purpose of studying population growth. In the 1920s the
interest was rekindled and many pieces of research have focused
on it since then, due to the fact that it is an excellent model for
the development and evolution of many growth phenomena, even
beyond those that gave it rise.

There are indeed many phenomena in nature exhibiting a fast
(virtually exponential) initial growth that then slow down after a
certain point (where the curve reaches an inflection point) until a
point of equilibrium or saturation of the system (carrying capacity).

The origins of the logistic model can be found in Ecology, where
it served the purpose of explaining population growth, but it has
also been used in Demography, and in Biology and Medicine for the
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analysis of the growth of bacteria, tumours, and several species of
animals and plants (see Tsoularis and Wallace, 2002 and references
therein). In the last years, its applications have been extended, and
the curve has even been employed in Economy for the illustration
of how innovation spreads (Giovanis and Skiadas, 2007); Gallagher
(2011) uses the curve for the analysis of the global oil production
and to locate production peak; Yokohama and Sanada (2009) use it
to predict linguistic changes and variations; Modis (2011) regards
it as a competition model and applies it to the process of granting
Nobel prizes. Gámez et al. (2009) consider a logistic growth in order
to describe the interaction between the populations of healthy and
irradiated cells of an organ under the effect of a constant radiation.
Several variations are currently under study, as in the case of the
double logistic curve (see Lipovetsky, 2010).

As is well known, the deterministic logistic model is defined in
terms of the differential equation

dx(t)
dt

=  ̨ x(t) −  ̌ x2(t)

x(t0) = x0,

(1)

where ˛,  ̌ are positive constants. Constant  ̨ defines the growth
rate, whereas the term −  ̌ x2 serves to inhibit or retard this rate. In
this sense,  ̌ is usually smaller than ˛. When the population x = x(t)
is small, this term has little effect on the value of x′ = dx(t)/dt and
so the population starts off with almost exponential growth. How-
ever, as x increases, the inhibiting term eventually slows the rate
of growth dramatically.
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Despite the model (1) having been widely used, it does not
account for possible random influences affecting the system under
study. As stated by Li et al. (2011),  “the noises are ubiquitous in
both nature and human society; for instance environmental fluctua-
tions, a lack of precision of measurements. In any case, one has to deal
with effects of randomness on the model.”  It is therefore necessary to
modify the deterministic model in order to introduce the random
element, and employ stochastic differential equations (SDE).

Several alternatives have been proposed for the stochastic mod-
ification of the equation (1).  Most of these add to the differential
equation a random term made of the variable under study plus a
white noise:

dX(t) = (  ̨ X(t) −  ̌ X2(t)) dt + f (X(t)) dW(t), (2)

where W(t) represents the standard Wiener process.
The first to propose such formulation was Feller in 1939, who

considered f (x) = c
√

x, c > 0. Nevertheless, the Kolmogorov back-
ward and forward equations associated to the diffusion process
solution of (2) have never been solved. Tuckwell and Koziol (1987)
show a summary of some diffusion processes generated by modi-
fying the previous function, some of which are linked to specific
applications like Demography (Artzrouni and Reneke, 1990), or
energy consumption (Giovanis and Skiadas, 1999). Also, Schurz
(2007) considers a more general version for the stochastic differ-
ential equation associated to logistic growth, and some versions
of such equations have been recently introduced, which include
delays (see Rupsys, 2008).

It must be noted that several of the works published in this
field find the following obstacle: although the SDE may  have a
solution (sometimes not an explicit one), the resulting diffusion
process is difficult to handle because the associated Kolmogorov
equations have not been solved. This precludes the use of the tran-
sition density functions, and also to address some problems like the
first-passage-time densities through time-variable boundaries (see
Gutiérrez et al. (1997)). Even more so, in the few cases where the
transition density has been calculated (Tuckwell, 1974), it has been
impossible to find an explicit expression for the expected value of
the solution for the SDE. For this reason, many of the works cited
above deal with such processes from an overly theoretical perspec-
tive, analysing the existence of a solution for the SDE, dealing with
the stability of the solution (see Sun and Wang, 2008), or simulating
the probability distribution (see Hu and Wang, 2011). For the cases
where an application has been made to some real phenomenon, the
estimation procedures have been based on derivations of the SDE,
either by using continuous sampling or through the discretisation
of the differential equation. Giovanis and Skiadas (1999) considered
the maximum likelihood estimation from the continuous sampling
of paths, and even Bayesian procedures have been used, as in Tang
and Heron (2008).

In  this paper we propose a new diffusion process associated with
the logistic curve that does not present the previously described
obstacles. For this process, whose mean function will be a logistic
curve, it is possible to explicitly determine the transition density
function, which allows to tackle questions like the estimation of
parameters through discrete sampling of paths after finding the
likelihood from the transition density functions and the initial dis-
tribution. Such improvement enables the researcher to calculate
the first-passage-time density, which requires an explicit form of
such densities.

The present paper is structured as follows. Section 2 introduces a
new reparameterisation of the logistic curve with significant differ-
ences to the ones usually employed, since it verifies that the upper
bound is dependent on the initial value. This can be particularly
useful in real-life situations in which information is available on the
growth of specific individuals, each exhibiting a logistic behaviour,
and with a limit value dependent on the initial one, and it is

necessary to develop a common model (as, for example, to deter-
mine the maximum growth each individual will reach). From such
curve, in Section 3 a new diffusion process is developed with a
mean function (which can be explicitly calculated) that fits the
curve. Also, the distribution of the process will be found, which
makes it possible to find the transition densities and the main
characteristics of the process. Section 4 deals with the maximum
likelihood estimation of the parameters of the process by means of
discrete sampling of the paths. The complexity of likelihood equa-
tions imposes the use of numerical procedures which require, in
turn, initial solutions. In order to find these, three alternatives are
proposed, and a simulation is carried out to determine the most
appropriate one according to the variability of the process and the
sample size. Also, this section includes a simulation example in
order to compare the estimation in this process to that developed
by means of continuous sampling in the logistic diffusion model
considered by Giovanis and Skiadas (1999),  a process which also
models logistic behaviour patterns, but for which inference is dealt
with by means of continuous sampling since there was no explicit
form for the transition densities. The results show how the pro-
cess herein proposed provides a better estimation as the variability
increases and the sample size decreases. Finally, in Section 5, an
application to study the growth of microorganisms in a culture is
presented in order to show how the new logistic process can be
applied to practical matters.

2. A reformulation of the logistic curve

Before presenting the new reparameterisation of the logistic
curve, let us summarise some interesting aspects of the most com-
monly used expression. This expression is found as the solution of
the differential equation (1) with results

x(t) = ˛/ˇ

1 + (((˛/ˇ)/x0) − 1)e−  ̨ (t−t0)
, t ≥ t0. (3)

This curve verifies that:

• It is increasing if and only if  ̨ >  ̌ x0.
• lim

t→∞
x(t) = ˛/ˇ.

• The curve exhibits an inflection point if and only if  ̨ > ˇ, in which
case it occurs at

tI = t0 + 1
˛

ln

(
˛/ˇ

x0
− 1

)
.

Note that the limit value of the logistic curve is independent
of x0. Nevertheless, there may  be practical situations in which this
must not be taken for granted, as when a growth phenomenon is
being studied and there are data from several individuals with a
common logistic behaviour but different initial and limit values
(as the weight or length of several individuals of the same animal
species). For this reason, it would be useful to find a new expression
of the curve which makes it possible to find a limit value that is
dependent on the initial value.

To this end, we  will start with the most general expression of
the curve (3),  namely

f (t) = a

1 + be−ct
, a, b, c > 0.

If we  assume that f(t0) = x0 > 0, then a = x0(1 + b e−ct0 ), from where
the new expression for the logistic curve is deduced:

f (t) = x0
1 + b e−ct0

1 + b e−ct
, t ≥ t0; b, c > 0, (4)
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