Contents lists available at ScienceDirect

BioSystems

journal homepage: www.elsevier.com/locate/biosystems

Modelling ¹⁸O₂ and ¹⁶O₂ unidirectional fluxes in plants: I. Regulation of pre-industrial atmosphere

Marcel J. André*

CEA, Direction des Sciences du Vivant - Laboratoire d'Ecophysiologie de la Photosynthèse, CEA Cadarache, 13 108 Saint Paul lez Durance, France

ARTICLE INFO

Article history: Received 27 May 2010 Received in revised form 1 October 2010 Accepted 1 October 2010

Keywords: Rubisco coevolution Palaeoatmosphere Pre-industrial atmosphere Oxygen compensation point Role of C3 plants Atmospheric regulation

ABSTRACT

In closed systems, the O_2 compensation point (Γ_0) was previously defined as the upper limit of O_2 level, at a given CO₂ level, above which plants cannot have positive carbon balance and survive. Studies with ${}^{18}O_2$ measure the actual O_2 uptake by photorespiration due to the dual function of Rubisco, the enzyme that fixes CO_2 and takes O_2 as an alternative substrate. One-step modelling of CO_2 and O_2 uptakes allows calculating a plant specificity factor (Sp) as the sum of the biochemical specificity of Rubisco and a biophysical specificity, function of the resistance to CO₂ transfer from the atmosphere to Rubisco. The crossing points (Cx, Ox) are defined as CO₂ and O₂ concentrations for which O₂ and CO₂ uptakes are equal. It is observed that: (1) under the preindustrial atmosphere, photorespiration of C3 plants uses as much photochemical energy as photosynthesis, i.e. the Cx and Ox are equal or near the CO_2 and O_2 concentrations of that epoch; (2) contrarily to Γ_c , a Γ_0 does not practically limit the plant growth, i.e. the plant net CO_2 balance is positive up to very high O_2 levels; (3) however, in a closed biosystem, Γ_0 exists; it is not the limit of plant growth, but the equilibrium point between photosynthesis and the opposite respiratory processes; (4) a reciprocal relationship exists between Γ_0 and Γ_c , as unique functions of the respective CO₂ and O₂ concentrations and of Sp, this invalidates some results showing two different functions for Γ_0 and Γ_c , and, consequently, the associated analyses related to greenhouse effects in the past; (5) the pre-industrial atmosphere levels of O_2 and O_2 are the Γ_0 and Γ_c of the global bio-system. They are equal to or near the values of Cx and Ox of C3 plants, the majority of land plants in preindustrial period. We assume that the crossing points represent favourable feedback conditions for the biosphere-atmosphere equilibrium and could result from co-evolution of plants-atmosphere-climate. We suggest that the evolution of Rubisco and associated pathways is directed by an optimisation between photosynthesis and photorespiration.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The role of land plants in the equilibrium of $oxygen (O_2)$ and carbon dioxide (CO_2) concentrations in the atmosphere was reviewed by Igamberdiev and Lea (2006), with analysis of numerous results

E-mail address: aprovenc@club-internet.fr

0303-2647/\$ - see front matter © 2010 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.biosystems.2010.10.004

of geochemical models, able to predict variations in palaeoatmospheric composition from geological samples and isotopic data.

Two epochs are particularly fascinating: (i) Late Carboniferous, ca. 300 million years ago, for which geochemical models, using palaeo carbon and sulphur cycles, calculate a possible level of O₂ up to 35% and CO₂ of 0.03% (300 ppm). Palaeo fires served as a strong negative feedback against excessive O₂ variations (Berner, 1999; Berner and Kothavala, 2001; Lenton, 2001). In numerous studies on Phanerozoic atmosphere, the role of photorespiration was rarely evocated, with the exception of Beerling et al. (1998). More recent works (Lenton, 2001; Igamberdiev and Lea, 2006) are based on the experiments of Tolbert et al. (1995) and Beerling et al. (1998). (ii) Despite of cyclic variations (glacial phases), the preindustrial O₂ and CO₂ concentrations tended towards relatively stable values of 21% and 280 ppm, respectively, before significant anthropogenic actions (Berner and Kothavala, 2001, and Figs, 1 and 2 in Igamberdiev and Lea, 2006). The first application of a physiological concept to the regulation of global cycles of carbon and oxygen was developed by Berry et al. (1994). The main attention was made

Abbreviations: Γ_0 , Γ_C , O_2 and CO_2 compensation points; Γ^* , true CO_2 compensation point, i.e. measured in the absence dark respiration; K_C , K_0 , V_C , V_0 by analogy with the kinetic parameters of Rubisco, apparent kinetics parameters of plants (green parts) for oxygenation and carboxylation, deduced from CO_2 and O_2 plant exchanges (i.e. Michaelis–Menten constants and *maximum* rates of carboxylation and oxygenation); v_0 and v_C , actual rates of oxygenation and carboxylation; τ (tau) and Sp, CO_2 specificity factors, respectively of Rubisco and of plants; P, net photosynthesis (measured as O_2 release or CO_2 uptake); PR, photorespiration; R, respiration (as O_2 evolution; U, O_2 uptake under light; WUE, water-use-efficiency; RuBP, ribulose-1,5-bisphosphate; PGA, phosphoglyceric acid.

^{*} Correspondence address: 154 montée d'Imbert, 04100 Manosque, France. Tel.: +33 492 721 128.

to the role of Γ_{C} on the atmosphere equilibrium. Igamberdiev and Lea (2006) concluded that photorespiration (the rate of which is directly related to the O₂/CO₂ ratio, due to the dual function of ribulose 1,5-bisphosphate carboxylase/oxygenase, i.e. Rubisco) may be an important mechanism in maintaining the limits of O₂ and CO₂ concentrations by restricting land productivity and weathering. That conclusion was particularly based on the study of Tolbert et al. (1995). The challenge of Tolbert et al. (1995) seems judiciously chosen: 'in a given plant, at a fixed CO_2 concentration, what is the O_2 concentration for which the net CO₂ assimilation of plants tends to zero?' From the concept of compensation points of CO₂, applied to O₂ variations, they observed several O₂ compensation points as a function of CO₂ levels. Tobacco and spinach plants were studied in a closed growth chamber for several hours in different atmospheres: at 350 ppm CO₂, the net CO₂ uptake fell to zero at 27% O₂ (i.e. the O_2 compensation point was 27%); at 220 and 700 ppm CO_2 , the O_2 compensation points were 23 and 35% O₂, respectively. The conclusion was made that the O₂ compensation points represent the upper limit of atmospheric O₂ (at a given CO₂ level) above which C3 plants cannot survive. Tolbert et al. (1995) suggested that such O_2 compensation points should control the rise of atmospheric O_2 level at each atmospheric CO₂ concentration.

Beerling et al. (1998) studied the effect of elevated O_2 on the acclimation of small plants growing (after germination) for 6 weeks in growth chambers at 35% O_2 and 300 ppm CO_2 . Photosynthesis of leaves was measured in a cuvette chamber at different CO_2 and O_2 concentrations. Its rate was halved under 35% O_2 as expected by a biochemical model (Farquhar et al., 1980). No significant changes in acclimation were observed based on photosynthesis rates in comparison with plants maintained in a normal atmosphere of 21% O_2 and 300–350 ppm CO_2 .

Without considering the possible role of compensation points observed by Tolbert et al. (1995), the biochemical model is embedded in global models that analyse Carboniferous palaeoatmospheres, mainly to introduce the action of CO₂ in photosynthesis, into the carbon balance (Berner and Kothavala, 2001; Beerling and Berner, 2005). The inhibitory effect of O₂ is introduced, but other specific roles of photorespiration, are ignored. The last paper analyses, in particular, positive feedbacks of CO₂ concentration on weathering, via its action on plant growth. The coevolution of plants and atmospheric CO₂ is noted with careful analysis of size of leaves or plant height. Igamberdiev and Lea (2006) reviewed the global results concerning respective changes in O₂ and CO₂ concentrations and, following the ideas of Tolbert et al. (1995), concluded that an important role of photorespiration was to equilibrate atmospheric O₂ and CO₂ concentrations. The finding that Rubisco is the chief architect of the atmosphere is also a conclusion of Nisbet et al. (2007) and Nisbet and Nisbet (2008). Based on the Tolbert et al. (1995) data, they found two "permitted zones" limited by the two linear functions of Γ_0 and Γ_c . The borders of these zones represent the limits of two permissible stable states of photosynthesis in the domain defined by the O₂ and CO₂ concentrations. These borders limited the instabilities of climate and the greenhouse effects imposed either by methane or by CO₂ starting from about 2.3 Ga ago.

In accordance with the views of Igamberdiev and Lea (2006), the approach taken by Tolbert et al. (1995) is valid as long as it is remembered that the experiments were carried out in closed chambers over short periods of time and therefore have some limitations when applied to the whole biosphere. The enclosed system described by Tolbert et al. (1995) lacked an ocean and rock cycle, both of which regulated the atmospheric CO₂ during the evolution of land plants. In O₂ evolution, the role of photosynthesis (both marine and land) was clearly predominant, but the role of different factors in CO₂ depletion/evolution, requires numerous estimates that appear sometimes controversial.

All this mean that a simple photosynthetic/photorespiratory O₂/CO₂ balance mechanism is not sufficient to explain gaseous homeostasis of the atmosphere. However, it is admitted that the biospheric equilibrium of CO₂ and O₂ concentrations works with a feedback mechanism that may be responsible for the oscillation regime probably together with the cycles of solar activity. This indicates that the approach of Tolbert et al. (1995) has a rational basis. It was further developed by Nisbet et al. (2007) and Nisbet and Nisbet (2008) who suggested the concept of permitted zone based on the variations of compensation points as function of O₂ and CO₂ concentrations. As the data of Tolbert are not in agreement with the results of Beerling et al. (1998), the role of both CO₂ and O₂ compensation points requires further development and clarification. Not far from the Γ_{C} concept, the notion of ecological CO₂ threshold has been proposed and modelled by Pagani et al. (2009). That modelling combines the positive effect of plant roots in rock weathering and a negative feedback when photosynthesis decreases the CO₂ level. The CO₂ decrease is limited by an ecological threshold. A specific role of PR in the rock weathering was not mentioned.

The present work uses modelling of steady-state exchange data (André and Massimino, 1984) from several experiments in closed chambers with different atmospheres. The main interest of these data is the use of ¹⁸O₂ labelling to directly measure the O₂ uptake due to oxygenation, including photorespiration, its main part. The simple model allows a reexamination of the relationship between plants, atmosphere and biosystem, to clarify the role of the O₂ compensation point and its liaison with Γ_c . The second advantage is the comparison between ancient and modern plants. Using the results of modelling of *in vivo* experiments, the role of oxygenation processes in the equilibrium concentrations in the pre-industrial atmosphere is analysed. New arguments for a plant–atmosphere coevolution are proposed, in relation to Rubisco evolution.

2. Methods

2.1. Experiments with Whole Plants

The modelling of steady-state exchange data (André and Massimino, 1984) from several experiments in closed chambers with different atmospheres was performed. In contrast to many other studies of photosynthesis, the exchanges were measured in aerial parts of whole plants, the roots being isolated and measured separately (André et al., 1985). Exceptions are made for mosses and macroalgae. The major point of the measurements in closed growth chambers in an artificial atmosphere is that the whole plants were acclimated and studied in conditions near the seasonal average of field or natural parameters, as demonstrated for maize and wheat plants (André et al., 1978; Gerbaud and André, 1979, 1980). The Data were produced from steady-state daily exchanges of aerial parts. Days when treatments were applied were compared to the days under standard conditions. To compensate for the variation due to growth, quasi steady-state daily data were normalised by the daily exchanges of days under standard conditions, assuming 'standard' net CO₂ and O₂ exchanges had a reference value of one (Gerbaud and André, 1979).

2.2. ¹⁸O₂ Labelling

The CO₂ and O₂ exchanges during photosynthesis, using ¹⁸O₂ labelling, were analysed in detail by von Caemmerer (2000). In agreement with Gerbaud and André (1979, 1980) and Canvin et al. (1980), the major assumptions are:

- (a) O₂ evolution is derived from water splitting at photosystem II, and there is no discrimination and thus the isotopic composition is that of the water from which it is derived. The O₂ evolution measures the electron flow generated by light in chloroplasts, and reflects the total photo-energy available for biochemical 'dark' reactions.
- (b) O₂ uptake processes consume O₂ in proportion to the isotopic abundance of O₂ in the surrounding air. Thus, it has been possible, with labelled ¹⁸O₂ and mass spectroscopy, to distinguish between O₂ evolution (¹⁶O₂) and O₂ uptake processes. O₂ uptake measures mainly the oxygenation of Rubisco, but also the Mehler reaction (Fig. 1).
- (c) There is little difference between the net CO₂ and O₂ exchanges (P_C and P_0 in Fig. 1), the classical measure of photosynthesis. In results and modelling, they are both expressed as *P*. The gas exchange of green parts of plants during light and dark periods is shown in Fig. 1. The labelling of O₂ with the stable isotope ¹⁸O₂ enables monitoring of the atmosphere in a closed chamber (Gerbaud and

Download English Version:

https://daneshyari.com/en/article/10884668

Download Persian Version:

https://daneshyari.com/article/10884668

Daneshyari.com