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Mining of existing biological data makes it possible to transfer knowledge between
originally independently pursued drug discovery projects, thereby

enhancing our understanding of biological mechanisms.
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Vast amounts of bioactivity data have been generated for small molecules

across public and corporate domains. Biological signatures, either derived

from systematic profiling efforts or from existing historical assay data,

have been successfully employed for small molecule mechanism-of-action

elucidation, drug repositioning, hit expansion and screening subset

design. This article reviews different types of biological descriptors and

applications, and we demonstrate how biological data can outlive the

original purpose or project for which it was generated. By comparing 150

HTS campaigns run at Novartis over the past decade on the basis of their

active and inactive chemical matter, we highlight the opportunities and

challenges associated with cross-project learning in drug discovery.

Introduction
Advances in screening technologies and an increasing awareness of the value of biological data

utilization have led to the accumulation of diverse small molecule bioactivity data in public and

corporate repositories [1,2]. The wealth of information ranges from quantitative (such as gene

expression, cellular phenotypes and protein phosphorylation) to categorical (such as clinical

adverse events) data. The availability of collective, large-scale datasets in the public domain and

institutional, historical data generated over time by companies has led to the recognition that

experiments have utility beyond their initial intended purpose. Therefore the design, execution

and interpretation of an experiment, in particular HTS, must be done in the context of collective

and institutional knowledge.

It has been increasingly recognized that historical and/or multidimensional datasets can be

used to characterize and compare small molecules (Fig. 1a). The generation of biological

descriptors from such datasets has enabled mechanism-of-action (MoA) hypotheses such as

molecular target identification, prediction of phenotypic drug response (e.g. preclinical toxicity

and clinical adverse events) and repositioning of existing drugs. Furthermore, biological descrip-

tors have been applied to virtual screening, potency prediction and subset design.

Whereas small molecules can be characterized by their outcomes in different biological assays,

it is much less realized that small molecules can also characterize assays. In a similar manner to
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how we assign properties to compounds from biological descrip-

tors (i.e. different assay endpoints) and learn from those similari-

ties, we can use biological information on screened compounds to

improve our understanding of the properties and relationships of

the assays themselves (Fig. 1b). For example, phenotypic screening

is currently experiencing a renaissance in drug discovery [3] and,

in many cases, the same phenotypic assay readout can result from

different modulations of a biological network. Similar small mol-

ecule chemotypes active in multiple assays can indicate that

similar biological mechanisms are being perturbed. Therefore,

by comparing different screening campaigns through the activity

of their compounds, relationships between the biology of initially

independent assays can be revealed. It also goes, therefore, that

relationships between drug discovery projects (e.g. modulations of

the same or similar pathways) can enable knowledge transfer

between projects. Additionally, such comparisons can also help

determine whether there are other factors (e.g. assay technology or

chemical composition bias) that could link to more-appropriate

assays or compound libraries.

In this review, we tackle both viewpoints on the small-mole-

cule-profile and assay-profile landscapes and highlight the value of

using institutional and collective knowledge. First, we give an

overview of applications of different biological descriptors that

have been introduced to characterize small molecules and high-

light successes that have been achieved with these approaches so

far. Second, we describe the lessons learnt from a systematic

analysis of more than 150 HTS assays at Novartis. Caveats such

as assay similarities resulting from technology biases, rather than

common biological mechanisms of active compounds, are out-

lined, along with a fair assessment of the opportunities and

challenges associated with cross-project learning. Our review aims

to highlight the fact that broad small molecule profiling offers the

opportunity to increase our understanding of biology further, as

well as that of the compounds and the technologies we use in

addition to simply identifying chemical matter to modulate an

intended target or phenotype.

Biological signatures of small molecules and their
applications
Compounds have been described by a variety of biological signa-

tures, ranging from biochemical profiles to gene expression and

clinical adverse events. Although the methods to derive and

compare them vary substantially, there are four generic applica-

tions of bioactivity profiles. (i) MoA elucidation – aims at identi-

fying the protein or an otherwise well-defined, chemically
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GLOSSARY

Biomarker an indicator of normal biological processes,
pathogenic processes or pharmacological responses to a
therapeutic intervention that can be objectively measured
and evaluated
Drug repositioning administration of a known drug for a
new indication
High-content screening a phenotypic screen where the
phenotype is morphological changes in a cell. The screening
technology mostly uses digital microscopy and subsequent
digital image processing to capture multiple readouts
simultaneously
Microarray 2D array on a solid surface where each spot
contains biological material. For example, in DNA microarrays
small amounts of a specific DNA sequence are attached to
each spot. They are subsequently hybridized to the cDNA in a
sample. The hybridization is quantified and gene expression
levels in the sample are determined
Neural network more precisely artificial neural network: a
machine-learning method inspired by biological nervous
systems. Highly interconnected nodes process information in
parallel to solve a problem. As with the human brain, neural
networks learn by example
Next-generation sequencing (NGS) high-throughput
sequencing that produces a high number of sequences in
parallel and where development was pushed by the demand
for low-cost sequencing. NGS is used for genome sequencing,
transcriptome profiling, DNA–protein interactions and
epigenome characterization
On- or off-target an on-target is the intended, primary target
of a drug. Through this target it achieves its desired
therapeutic effect. An off-target is a secondary target that is
modulated in addition to the primary target. In contrast to
the on-target, it does not contribute to therapeutic efficacy
but its modulation can cause undesired side-effects
Pharmacodynamics study of how a drug affects the body (at
different concentrations)
Pharmacophore a set of molecular features present in
a ligand in a specific geometric arrangement. This feature
set is required for molecular recognition by the biological
target
Phenotypic screen a screen that aims at identifying
substances that modulate the phenotype of a cell or an
organism in a defined manner. In contrast to target-based
screens, the molecular target of an active agent is not known
a priori (i.e. the desired phenotype can result from different
mechanisms-of-action)
Polypharmacology the activity of a compound at multiple
targets
Primary data high-throughput screening activity data.
Typically, activities are based on measurements at a single
compound concentration
Resource description framework a method for conceptual
description of information using defined syntax and subject-
predicate-object (triplet) expressions. Example: drug (subject)
binds to (predicate) protein (object)
Scaffold hopping the process of finding a small molecule
that has the same desired bioactivity but a different
chemotype (i.e. a substantially different chemical structure)
Semantic web a movement to make information in the web
readily interpretable by machines that can be used to search,
share and integrate information more easily. This requires a
better structuring of documents and common data formats
in the web

Support vector machine a supervised machine-learning
approach to separate two different classes. The method
projects the input training data into a higher dimensional
descriptor space and finds a hyperplane that best separates
the two classes in that space. A test object is projected into
the same space and classified based on which side of the
hyperplane it is located
Two-dimensional polyacrylamide gel electrophoresis
(2D-Page) a gel electrophoresis technique to separate
proteins in mixtures. The proteins are separated by two
different properties in two dimensions (i.e. in two directions
that are 908 apart) on 2D gels
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