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High-throughput compound screening is time and resource consuming, and considerable effort is

invested into screening compound libraries, profiling, and selecting the most promising candidates for

further testing. Active-learning methods assist the selection process by focusing on areas of chemical

space that have the greatest chance of success while considering structural novelty. The core feature of

these algorithms is their ability to adapt the structure–activity landscapes through feedback. Instead of

full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used

to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have

the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of

the various computational active-learning approaches and outline their potential for drug discovery.

Introduction
TheQ2 concept of iterative molecular design, synthesis, and testing

forms a central pillar of drug discovery; it provides the basis for our

understanding of the underlying structure–activity relation (SAR).

Iterative synthesize-and-test cycles with SAR model adaptation to

newly obtained activity data improve the overall quality of the

designer compounds and help reduce experimentation costs. Sim-

ilarly, the screening of existing compounds profits from such

feedback-driven picking: within a fixed budget, adaptive screening

rounds through multiple acquisition-and-test cycles can lead to

significantly better solutions compared with a single large screen

[1,2]. The crucial step in each learning cycle is the formulation of a

well-motivated hypothesis for compound generation (de novo

design) or compound picking (when screening from a compound

pool) based on the available SAR data. The selected molecules

can either be hypothesized actives or readily available compounds

that will improve the model by elucidating poorly understood

parts of the SAR. Commonly, an interdisciplinary team of scien-

tists generates the new hypothesis by inferring from their expertise

and medicinal chemistry ‘intuition’. Therefore, any design hy-

pothesis is easily biased towards preferred chemistry [3,4] or pre-

disposed model interpretation [5,6]. Although expert knowledge is

indisputably important for successfully guiding drug discovery

projects, an unbiased perspective during the compound selection

process can lead to structurally surprising chemical agents with the

desired novelty, bioactivity, and physicochemical properties [7].

Moreover, with the recent advances of microfluidics-assisted inte-

grated medicinal chemistry platforms (e.g., lab-on-a-chip systems

[8]), the generation of an accurate and suitable molecular design

hypothesis and, consequently, the selection of new compounds

for synthesis and testing, becomes the bottleneck in an otherwise

automatable optimization process [9].

Computational models act as rapid and objective decision makers

in this decisive selection step (Fig. 1a) [10,11]. Active learning (also

known as ‘selective sampling’) is an umbrella term from the field of

machine learning for methods that select data points for testing and

feeding back into the model [12,13]. Approximately 15 years ago,

the term was introduced to drug discovery [14]. Recently, the topic

has gained momentum, driven by technological advancements in

small-scale organic synthesis systems and the accuracy of machine-

learning prediction models. Here, we provide a comprehensive

overview of investigations that have applied active-learning tech-

niques to drug discovery. We focus on methods for finding

novel chemical structures and discuss possible future directions

of algorithm development and how these might help solve current

challenges in computer-assisted drug design (Box 1) Q3.
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Exploration versus exploitation
Compound selection strategies can be distinguished according to

their underlying motivation (Fig. 1b): whereas some algorithms

utilize the available information to retrieve compounds with

certain properties (‘exploitation’), others seek to improve the

model by adding knowledge (‘exploration’). From a technical

point of view, exploration can either be performed from a mole-

cule-centric perspective (‘uncertainty sampling’, i.e., selecting

molecules that are predicted with low confidence by the model)

or by explicitly estimating the impact of adding the additional

data point on the error or architecture of the model (‘model-

centric’ approaches). Explorative strategies sample more diverse

chemical structures and rapidly increase the knowledge for the

model (Fig. 2a), while not always proposing favorable structures in

terms of their activity (Fig. 2b). Conversely, exploitive strategies

retrieve active compounds with a greater probability, but do not

necessarily add knowledge to the model. In fact, the model quality

can even decrease over time when using an exploitive strategy

because of the introduction of a strict bias towards highly active

compounds (Fig. 2a). Various strategies for either of the two

compound selection principles have been proposed and validated

in the context of drug discovery (Table 1).

Explorative approaches have proven particularly attractive

when aiming at novel chemotypes with desired bioactivities

(Fig. 2c). For example, to probe for the applicability of uncertainty

sampling to explorative drug design, Lemmen and coworkers

developed both a jury of Perceptrons and a support vector machine

(SVM) model to distinguish thrombin ligands from ‘inactives’

[14,15]. Model optimization was conducted by adding examples
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FIG. 1

(a) Schematic of the active-learning concept. Known activity data are

provided as training data to a machine-learning model that generalizes this

knowledge. A selection strategy is used that picks from a list of new

molecules with unknown activity. These selection strategies usually try to
identify molecules that would be particularly suited for improving the model

quality (explorative strategies) if they are included in the training database

with their activity value. Alternatively, molecules are selected that might have

favorable activity values (exploitive strategies). After the selected molecules
have been tested (‘labeled’), they are added to the training data to train an

improved machine-learning model. (b) Conceptual comparison of different

active-learning strategies. These can be distinguished methodologically
according to whether the selection strategy is derived from the whole model

(‘model focused’) or by examining individual data points (‘data focused’).

When compounds are selected with the whole model in mind, the strategies

are explorative. Possible implementations are predicting or calculating the
change in model architecture (‘model change’) or the improvement of the

model (‘model improvement’; e.g., variance reduction or error on the test set).

When examining individual data points, models can either be exploitive

(‘active retrieval’) or use the error or uncertainty on the individual data points
to perform confined model optimization (‘uncertainty sampling’).

BOX 1

Pseudocode for performing a retrospective active-
learning investigation (‘ActiveLearning’)

The function takes descriptions and activities of a set of molecules
(‘M’) and a selection function (‘s’) that is used for the picking of
molecules. First, the molecular data are split into three subsets in a
stratified manner according to activity. Afterwards, the training
data (‘T’) are used for initial model training (‘trainRFmodel’). The
active learning is performed for 100 iterations in which we first pick
a molecule from the learning data (‘L’) according to the selection
function. This selected molecule is then removed from the learning
data and added to the training data, with which the model is
retrained. The performance of the new model can then be
evaluated (‘evaluate’), for example according to the error on the
test data (‘E’, Fig. 2a, main text), the activity of the picked molecule
(Fig. 2b, main text), or the number of scaffolds known to the model
(Fig. 2c, main text). As examples of selection functions, we show
pseudocode for a random strategy (‘random’) that picks a random
molecule from the set, an exploitive strategy (‘exploitive’) that picks
the molecule with the highest predicted activity, and an
explorative strategy (‘explorative’) that picks the molecule with the
highest prediction uncertainty (e.g., the maximum variance
according to the individual activity predictions of the trees of the
random forest model).
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