

Available online at www.sciencedirect.com

Nuclear Medicine and Biology 32 (2005) 29-38

NUCLEAR MEDICINE $-$ AND $-$ BIOLOGY

www.elsevier.com/locate/nucmedbio

Optimization of labeling and metabolite analysis of copper-64-labeled azamacrocyclic chelators by radio-LC-MS

C. Andrew Boswell^a, Paul McQuade^a, Gary R. Weisman^b, Edward H. Wong^b, Carolyn J. Anderson^{a,*}

^aMallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
b Denastment of Chamistry University of New Hampshire, Durham, NH 03824, USA ^bDepartment of Chemistry, University of New Hampshire, Durham, NH 03824, USA Received 27 August 2004; received in revised form 17 September 2004; accepted 20 September 2004

Abstract

The cross-bridged tetraamine ligand 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (H₂CB-TE2A) allows formation of a radio-copper complex with higher in vivo stability than that of the corresponding non-cross-bridged analog 1,4,8,11 tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA). The structure of the natCu(II) complex of CB-TE2A has been previously determined by X-ray crystallography; however, direct high-pressure liquid chromatography (HPLC) characterization of the corresponding ⁶⁴Cu complex was inaccessible due to the inability to detect the complex by ultraviolet absorbance at the radiotracer level. A reverse-phase HPLC separation of a series of ^{nat}Cu(II)-tetraazamacrocyclic complexes, both traditional and cross-bridged, was developed and applied toward characterization and assessment of the purity of the corresponding no-carrier-added ⁶⁴Cu-labeled complexes. Verification of the identity of copper-64-labeled compounds was also achieved by coupling this HPLC method with mass spectrometry. The radio-liquid chromatography/mass spectrometry methodology was further extended to study the in vivo metabolic fates of ⁶⁴Cu-azamacrocyclic complexes.

 $© 2005 Elsevier Inc. All rights reserved.$

Keywords: Copper-64; Azamacrocycle; HPLC; Radio-LC-MS; Impurity identification; Metabolite analysis

1. Introduction

Copper-64 is a useful diagnostic and therapeutic radionuclide in nuclear medicine due to its half-life $(t_{1/2}=12.7 \text{ h})$, decay characteristics $(\beta^+, 7.4\%; \beta^-, 39\%)$ and the capability for large-scale production with high specific activity on a biomedical cyclotron [\[1,2\].](#page--1-0) Increased use of ⁶⁴Cu and other Cu radioisotopes in both positron emission tomography and targeted radiotherapy applications has created a need for copper chelators with high in vivo stability. The development of optimal chelators for Cu(II) is of considerable importance when designing systems for the in vivo delivery of copper radioisotopes.

Polyaminopolycarboxylate macrocyclic ligands are commonly used for complexation of metals for radiopharmaceutical applications. However, the Cu(II) complexes of these ligands are susceptible to metal dissociation in vivo, releasing copper ions that readily bind proteins. The commercially available macrocyclic ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (H4TETA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (H4DOTA) ([Fig. 1\)](#page-1-0) have been extensively used for chelation of copper radionuclides in clinical imaging and therapy studies involving both antibodies and peptides [\[3–9\].](#page--1-0) However, the in vivo dissociation and subsequent binding of radiometals to proteins have been demonstrated in normal rats [\[10,11\].](#page--1-0) The macrocyclic ligands 4,11-bis(carboxy-

Abbreviations: HPLC, high-pressure liquid chromatography; PDA, photodiode array; UV, ultraviolet; λ_{max} , wavelength of maximal absorbance; RP, reverse phase; LC-MS, liquid chromatography/mass spectrometry; ESI, electrospray ionization; ES⁺, electrospray (positive ionization mode); PET, positron emission tomography; H₂CB-TE2A, 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane; H4TETA, 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid; $H_2CB-DO2A$, 4,10bis(carboxymethyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane; H4DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; H3TE3A, 1,4,8,11-tetraazacyclotetradecane-1,4,8-triaceticacid;HEPES,4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EDTA, ethylenediaminetetraacetic acid.

^{*} Corresponding author. Tel.: +1 314 362 8427; fax: +1 314 362 9940. E-mail address: andersoncj@wustl.edu (C.J. Anderson).

^{0969-8051/\$ –} see front matter \odot 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.nucmedbio.2004.09.004

Fig. 1. Structural comparison of H₂CB-TE2A, H₂CB-DO2A, H₄TETA and H₄DOTA (top), and structural representations of the corresponding ⁶⁴Cu-labeled complexes based on solved crystal structures (bottom).

methyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane $(H_2CB-$ TE2A) and 4,10-bis(carboxymethyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane $(H_2CB-DO2A)$ [\[12\]](#page--1-0) are analogs of H4TETA and H4DOTA, respectively, where two of the acetate arms present have been replaced by ethylene bridges between nonadjacent nitrogens (Fig. 1). These ligands have been shown to form Cu(II) complexes [\[12,13\]](#page--1-0) with superior kinetic stability and improved biological behavior compared to their nonbridged analogs [\[11,14\].](#page--1-0)

Development of a chromatographic separation of these azamacrocyclic complexes would allow for the determination of radiochemical purity and would also provide a means for the detection of metabolites from biological samples. Accomplishing these goals would facilitate the evaluation of azamacrocycles as carriers of copper radionuclides in radiopharmaceutical applications. In studies reported previously, an ion-exchange chromatographic technique was developed for studying the lability of ⁶⁴Cu complexes with ethylenediaminetetraacetic acid (EDTA) and other acyclic chelators in an aqueous system [\[15\].](#page--1-0) A reverse-phase (RP) separation of a radiolabeled 153 Gd azamacrocyclic complex was developed using a C-18 column and a buffered aqueous eluant [\[16\].](#page--1-0) Herein we report the development of a RP method for the separation of 64 Cu-labeled azamacrocyclic complexes.

Mass spectrometry coupled to high-pressure liquid chromatography (HPLC) (LC-MS) has proven to be a valuable tool for the analysis of compounds being developed as radiopharmaceuticals, allowing for detection of trace-level impurities [\[17\],](#page--1-0) determination of specific activity [\[18\]](#page--1-0) and identification of metabolites [19-21]. An LC-MS methodology for separation of ⁶⁴Cu-labeled azamacrocyclic complexes would be advantageous because of the requirement of high sensitivity for detection and characterization of radiometal complexes at or near the tracer level. Incorporation of 64 Cu into the desired ligand may be confirmed by comparing the retention times of radiolabeled species with the appropriate characterized ^{nat}Cu complexes detected by LC-MS. This radio-LC-MS approach was used to confirm

the identities of 99m Tc Sestamibi [\[22\]](#page--1-0) and other 99m Tc radiopharmaceuticals [\[23,24\],](#page--1-0) a process that is usually achieved at the tracer level only indirectly by assessment of RP-HPLC retention times. The experiments described herein were directed toward confirmation of the formation of desired 64Cu-azamacrocyclic complexes at the tracer level, identification of 64Cu-labeled impurities and investigation of the extent of 64 Cu-azamacrocyclic complex metabolism in vivo.

2. Materials and methods

2.1. General procedures and materials

Cold copper salts and solvents were commercial grade. Cross-bridged ligands H_2 CB-TE2A and H_2 CB-DO2A were prepared as trifluoroacetate salts by modifications of published methods $[12,13]$. H₄TETA obtained from Aldrich Co. (Milwaukee, WI) was used to collect the data shown in [Fig. 7;](#page--1-0) H4TETA obtained from Macrocyclics (Dallas, TX) was used to collect the data shown in [Figs.](#page--1-0) 2, 8 and 9); H4DOTA was obtained from Macrocyclics.

 $n^{\text{nat}}Cu(II)\cdot \text{TETA}\cdot 2H_2O$ [\[25\]](#page--1-0), $n^{\text{nat}}Cu(II)\cdot \text{DOTA}$ [25], \lceil^{nat} Cu(II) · CB-TE2A · Na(H₂O)ClO₄]₂ · H₂O [13] and n_{nat} Cu(II)-CB-DO2A [\[11\]](#page--1-0) were prepared according to published methods. Samples for injection were prepared by dissolving the crystals in mobile phase prior to injection; typical injection volumes were 50 or 100 μ l. A solution containing all four natCu complexes, each at a concentration of 1.25 mg/ml, was analyzed to obtain the data for [Fig. 2](#page--1-0). Analysis of a 5 mg/ml solution of crude $^{nat}Cu-CB-TE2A$ gave</sup> the data shown in [Fig. 3](#page--1-0). Analysis of a 5-mg/ml solution of recrystallized natCu-TETA provided the data shown in [Fig. 7.](#page--1-0)

2.2. Radiochemistry

Copper-64 was prepared on the Washington University Medical School CS-15 cyclotron by the 64 Ni(p,n) 64 Cu nuclear reaction at a specific activity range of 50–200 mCi/ μ g as previously described [\[1\].](#page--1-0) No-carrier-added ⁶⁴CuDownload English Version:

<https://daneshyari.com/en/article/10916383>

Download Persian Version:

<https://daneshyari.com/article/10916383>

[Daneshyari.com](https://daneshyari.com)