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a b s t r a c t

Background and purpose: To investigate the feasibility of using an artificial neural network (ANN) to gen-
erate beam orientations in stereotactic radiosurgery (SRS).
Material and methods: A dataset of 669 intracranial lesions was used to build, train, and validate three
ANNs. In ANN1, Cartesian coordinates described the localization of the PTV and OARs. In ANN2, a genetic
algorithm was used to optimize the model. In ANN3, vectors were used to define the distance between
the PTV and OARs. In all ANNs, inputs consisted of the treatment plan parameters plus the patient’s par-
ticular geometric parameters; outputs were beam and table angles. The ANN- and human-generated
plans were then compared using dose–volume histograms, root-mean-square (RMS) and Gamma index
methods.
Results: The mean volume of PTV covered by the 95% isodose was 99.2% in the MP’s plan vs. 99.3%, 98.5%
and 99.2% for ANN1, ANN2, and ANN3, respectively. No significant differences were observed between
the plans. ANN1 showed the best agreement (Gamma index) with the human planner. While RMS errors
in the three ANN models were comparable, ANN1 showed the lowest (best) values.
Conclusion: ANN models were able to determine beam orientation in SRS. ANN-generated treatment
plans were comparable to human-designed plans.

� 2014 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology xxx (2014) xxx–xxx

In recent years, stereotactic radiosurgery (SRS) has become a
standard treatment option for many pathologies of the central ner-
vous system, including metastases [1–6]. The number of beams
needed and their arrangement are strictly related to the prescribed
dose to the PTV and the location of nearby critical organs [7,8].
When a linear accelerator is used to perform SRS, optimal treat-
ment plans are achieved when the plan consists of several coplanar
and non-coplanar beams selected by the medical physicist (MP)
[9–12].

Unlike other radiotherapy procedures, SRS uses multiple nar-
row beams whose number and orientation vary so much that the
use of a standard template is less effective than in most other
radiotherapy modalities; even so, standard templates are used in
certain tumor locations [12]. Given that beam configuration in
SRS always requires a compromise between target coverage and
OAR sparing [13–16], numerous studies have evaluated algorithms
that might support automated beam orientation selection [14] for
both coplanar [17–19] and non-coplanar [15,19,20] beams.

The complexity inherent to the wide array of potential beam
configurations provides an opportunity to apply an artificial intel-
ligence support system [17,21,22]. Artificial neural networks
(ANN) have an important advantage over conventional modeling
methods in that the neural net requires no prior knowledge of
the functional relationship between the various input values, nor
between input and output parameters. For this reason, ANNs have
been used in many medical applications, as an adjunct to standard-
ized treatment planning [23,24], to adjust treatment planning
parameters [17,22,25], to improve the treatment process [26],
and to predict treatment outcomes [27,28].

The main aim of the present study was to determine whether an
ANN could help accelerate and improve the process of SRS plan-
ning. To do this, we constructed three ANN models to predict SRS
beam arrangement (gantry and table orientations) using various
sets of inputs.

Material and methods

A total of 539 patients ranging in age from 16 to 85 years were
treated with SRS for intracranial lesions at our clinic between
November 2004 and November 2012 (for treatment planning
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details and inclusion criteria see Supplementary Material). Most
patients (425) had only a single lesion (425 lesions), while 98
patients had two lesions (98 � 2 = 196 lesions), and 16 had three
lesions (16 � 3 = 48 lesions). Therefore, a total of 669 lesions were
included in the study; of these, 617 were used to train the ANNs
while the remaining 52 were used for prospective validation. The
ANN models architecture is described in the Supplementary Material.

A pilot study using multivariate analysis was performed to
define the number and type of inputs needed. In that study, multi-
ple linear regressions were performed to identify those parameters
that provided non-relevant information. Such parameters were
excluded from the model because they increased the processing
time without providing any useful information.

The general inputs were obtained from the treatment planning
system (TPS) and included the prescribed dose value, number of
PTVs treated concomitantly (maximum three), and the volumes
of the PTVs (PTV, PTV1 and PTV2) and the 6 OARs. Supplementary
Table 1 (see in Supplementary Material) summarizes and presents
the set of 12 general inputs (with their range and median values).
Input parameter #12 (Region) describes the localization of the PTV
in one of the eight brain sub-volumes defined by the authors in
Table 1. This was done to define PTV localization in the brain and
to separate intracranial lesions by location.

Two approaches to mapping patient geometric information to
the corresponding set of input parameters were evaluated. Both
sets of inputs were based on defining the position of the PTV
and the geometric relationship between the PTV and other struc-
tures. The first approach used the Cartesian system defined by the
TPS: each structure was mathematically reduced to three coordi-
nates (x,y,z) of the middle point above structures. Supplementary
Fig. 1a (in Supplementary Material) provides an example. Using
this reduction scheme, each lesion could be reduced to just 27
geometric input parameters (3 for each of the 9 analyzed structures).

In the second approach, patient geometric structures were
defined by 8 vectors that described the distances [in cm] between
the middle points of the PTV and the other structures. The (x,y,z)
coordinate inputs for the PTV were retained as shown in Supple-
mentary Fig. 1b (in Supplementary Material). The second approach
reduced the number of inputs to only 11 input parameters (8 vec-
tors + 3 coordinates [x,y,z] of the middle of the PTV).

Linear accelerator-based SRS treatment plans typically have
more than a dozen beams [9,10,12]. In our study, the largest num-
ber of beams was 14. For each beam, two separate nets were con-
structed to account for the gantry and table angles as the outputs
of the neural networks.

ANN design, training, testing and validation

The ANNs were built with data from 617 lesions based on a back
propagation algorithm with 0.01 learning coefficient. The neural
network was trained for approximately 10,000 iterations until

the expected decrease in performance due to overtraining was
observed. The errors for the nets were 0.001. The number of epochs
ranged from 1000 to 3000. The lesions were randomly stratified to
either training (517 lesions) or testing (100 lesions) by a random
resampling technique (cross-validation).

Each input parameter was converted to numerical form (nor-
malized according to the maximal value) and assigned a 10 digit
code, which corresponded to 10 neurons. To illustrate this coding
system, it is best to provide an example: for the 1st general
input (i.e., the prescribed dose) doses could range from 6 to
24 Gy, thus a dose of 18 Gy was coded in binary form as
0000001000.

Output parameters were represented by 73 digits, which corre-
sponded to 73 neurons, and converted to a 72-digit number (360/
5� = 72; 5� accuracy) plus the 37th position with 0 for presence and
1 for absence of the particular angle. For example, a 30� angle was
presented as 0010000000. . .. . .0 (all digits following the third digit
were ‘‘0’’, including the 37th digit).

During the validation phase of the study, we used a set of clin-
ical data (the inputs) for 40 consecutive patients (28 with one
lesion and 12 with two lesions) that were unknown to the ANN
models. These 52 (28 + 24 [12 � 2]) lesions were located in each
of the eight brain regions: 11 lesions in region 1, and 8, 9, 6, 2, 3,
3, 10 lesions, respectively.

The datasets for each ANN model were extracted from the TPS
and converted into binary form. Because the maximum number
of beams was 14 and each beam orientation was defined by both
gantry and table angles, a total of 28 neural nets (14 � 2) were
needed.

The MP used ANN-generated beam orientations to prepare a
total of 156 new treatment plans in the TPS. The other treatment
plan parameters were the same as those used in the original
treatment plans. To reduce bias, all plans were created at the same
time.

Methods of plans comparison

Dose values and dose distribution were used to compare the
ANN-generated plans to the plan prepared by the MP. Both the
MP and ANN-generated plans were required to fulfill the criteria
for target coverage [30]. The comparison was performed in three
steps in order to choose the best ANN model.

In the first comparison, the maximal doses to the OARs and
maximal and minimal dose to PTV for the MP-designed plans
and the three ANN-generated were compared for all lesions from
the validation group. All doses were read from the respective
dose–volume histograms (DVH). In the second comparison, root-
mean-square (RMS) discrepancies between the MP-designed and
ANN-generated plans were calculated for the number of beams
(NB), maximal and minimal doses (Dmax, Dmin,) in selected OARs,
volume of PTV receiving 95% of the prescribed dose (V95%), and
conformity index (CI 95%). The RMS error was defined as follows:
RMS = square root (sum (PMP � PANN)), where parameters P were:
NB, Dmax, Dmin, CI 95%, V95%.

In the third comparison, we used a dedicated program
(OmnioPro IMRT v.1.6; IBA Dosimetry GmbH, Germany) to apply
the Gamma index method proposed by Low et al. [34]. Agreement
between the MP-derived plans and those predicted by the three
ANN models was checked for the areas encompassed by the
60%, 80%, 90%, 95% and 99% threshold isodose levels. The areas
considered were located at the reference transversal scan (inter-
secting isocenter). For each isodose level, we calculated the per-
centage of points with a gamma index below 1 (c < 1) and the
percentage of the field areas (%FA) that passed the agreement
criteria (dose difference [DD] = 2%, dose to agreement [DTA] = 2 mm).

Table 1
Eight regions of the brain (sub-volumes) defined by the authors. Patients were
divided into 8 subgroups according to the PTV localization in the brain. The number of
PTVs in each particular region with its anatomical localization is presented in the
table.

Index Anatomical localization Number of PTVs

R1 Right cranial anterior 71
R2 Left cranial anterior 95
R3 Right cranial posterior 100
R4 Left cranial posterior 102
R5 Right caudal anterior 40
R6 Left caudal anterior 27
R7 Right caudal posterior 89
R8 Left caudal posterior 93
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