ELSEVIER

Contents lists available at ScienceDirect

## **Fungal Genetics and Biology**

journal homepage: www.elsevier.com/locate/yfgbi



# The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in *Candida albicans*

Rebeca Alonso-Monge, Elvira Román, David M. Arana, Daniel Prieto, Verónica Urrialde, César Nombela, Jesús Pla \*

Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain

#### ARTICLE INFO

Article history: Received 26 November 2009 Accepted 29 March 2010 Available online 11 April 2010

Keywords: Candida albicans Dimorphism MAP kinase pathway Transcription factor Oxidative stress

#### ABSTRACT

Cells respond to environmental changes triggering adaptive responses which are, in part, mediated by a transcriptional response. These responses are complex and are dependent on different transcription factors. The present work reports the implication of the Sko1 protein in several processes relevant to the physiology of Candida albicans. First, Sko1 acts as transcriptional repressor of genes involved in pathogenesis and hyphal formation, which results in increased expression of the hyphal related genes ECE1 and HWP1 without significant changes in the virulence using a mouse model of systemic infection. Second Sko1 is involved in the response to oxidative stress and sko1 mutants increase the sensitivity of hog1 to the myelomonocytic cell line HL-60. Genome-wide transcriptional analysis after hydrogen peroxide treatment revealed that sko1 mutants were able to generate an adaptive response similar to wild type strains, although important differences were detected in the magnitude of the transcriptional response. Collectively, these results implicate Sko1 as an important mediator of the oxidative stress response in C albicans.

© 2010 Elsevier Inc. All rights reserved.

#### 1. Introduction

Cells are frequently exposed to environmental stress. Under these non optimal conditions, the generation of a proper adaptive response is necessary to guarantee survival. When yeast cells are exposed to mild osmotic stress, they undergo a response which is accomplished, at least it part, by the HOG (high osmolarity glycerol) MAP kinase cascade (Brewster et al., 1993). In Saccharomyces cerevisiae, this route is activated by two upstream branches (Banuett, 1998; Gustin et al., 1998; Posas et al., 1998a). The first one depends on the transmembrane protein Sln1, whose basal autophosphorylation activates Ypd1 and Ssk1 (Posas et al., 1996; Tao et al., 2002) and prevents activation of the Hog1 MAP kinase. Under osmotic stress, unphosphorylated Ssk1 leads to phosphorylated Ssk2/Ssk22 that activates the Pbs2 MAPK kinase (MAP kinase kinase) (Boguslawski, 1992) and the Hog1 protein (Brewster et al., 1993). A second input comes from the Sho1, Cdc42, Ste20/Ste50 and Ste11 (the MAP kinase kinase kinase) proteins that also lead to activation of Pbs2 (O'Rourke and Herskowitz, 1998; Posas et al., 1998a,b; Raitt et al., 2000). The Sho1 transmembrane protein is responsible for attaching this complex to regions more vulnerable to osmotic stress.

Abbreviations: MAP kinase, mitogen activated protein kinase.

\* Corresponding author. Fax: +34 91 3941745. E-mail address: jesuspla@farm.ucm.es (J. Pla).

It has become recently clear that the HOG pathway is also important for oxidative stress resistance in S. cerevisiae (see Ikner and Shiozaki (2005) for a review of the role of MAPK pathways in oxidative defense mechanisms). Although initial studies reported that Hog1 was not responsive to hydrogen peroxide (Schüller et al., 1994). It was later shown that Hog1 is indeed activated in response to certain oxidants (Singh, 2000; Haghnazari and Heyer, 2004; Bilsland et al., 2004). Reinforcing these data, mutants altered in the HOG pathway are more sensitive to oxidants (Singh, 2000; Rep et al., 2001). The yeast response to oxidative stress is, at least in part, developed at the transcription level. Some genes like YAP1 (Harshman et al., 1988), YAP2 (Bossier et al., 1993; Stephen et al., 1995), MSN2/MSN4 (Kobayashi and McEntee, 1993; Estruch and Carlson, 1993), SKN7 (Krems et al., 1996; Morgan et al., 1997; Lee et al., 1999) or SKO1 (Rep et al., 2001) among others (see Moye-Rowley (2002) for a review) participate in the induction of oxidative defense mechanisms. Sko1 has been shown to mediate the recruitment of the Tup1-Ssn6/Cyc8 complex to the promoter regions of certain HOG1-dependent genes (Proft and Serrano, 1999; Proft et al., 2001). Phosphorylation of Sko1 occurs in response to osmotic stress at multiple sites within the N-terminal region (Proft et al., 2001); this converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF allowing the expression of targets genes (Proft and Struhl, 2002). Deletion of SKO1 also modifies the induction of certain oxidative stress responsive genes. therefore establishing a link between Sko1 and

Hog1-dependent oxidative stress response in *S. cerevisiae* (Rep et al., 2001). Sko1 is also regulated by the cAMP/protein kinase A (PKA) signaling pathway in response to osmotic stress: PKA phosphorylates Sko1 near the bZIP domain (Proft et al., 2001). Sko1p is localized in the nucleus of unstressed cells but redistributes to the cytosol upon severe salt stress by a mechanism that is independent of Hog1 and Bcy1, the regulatory subunit of PKA (Pascual-Ahuir et al., 2001).

In C. albicans the HOG pathway is an important mediator of virulence and hog1 mutants display reduced virulence in a mouse model of experimental infection (San José et al., 1996; Roman et al., 2007). This route plays a repressive role over the yeast-tohypha transition (Alonso-Monge et al., 1999; Arana et al., 2005; Eisman et al., 2006) and hog1 mutants are, therefore, hyperfilamentous. Avirulence of hog1 mutants can be explained, at least in part, by their enhanced susceptibility to oxidative stress and killing mediated by phagocytes (Alonso-Monge et al., 2003a; Arana et al., 2007). In agreement with this, oxidative stress (Alonso-Monge et al., 2003b) - as well as osmotic (San José et al., 1996) and heavy metal stress (Smith et al., 2004) – activate the pathway. Some downstream mediators of the HOG pathway have been identified in the last years. Although hog1 mutants share some phenotypes with cap1 mutant (homolog to yeast yap1), localization, phenotypic characterization and biochemical evidence indicate that Cap1 is not a downstream target of Hog1 (Alonso-Monge et al., 2003a). a conclusion also inferred from genome wide studies (Enjalbert et al., 2006). Recently, the Sko1 protein has been shown to be phosphorylated in a Hog1-dependent manner in response to osmotic stress (Rauceo et al., 2008). This study also concluded that Sko1 is involved in the response to caspofungin and participates in cell wall construction. We have characterized here the role of Sko1 in the oxidative stress response of this fungus. We demonstrate by genome wide analysis that Sko1 acts mainly as a repressor of gene expression. We also demonstrate a role for this protein in yeast-tohypha transition and its implication in the regulation of the MAP kinase network.

#### 2. Materials and methods

#### 2.1. Strains and growth conditions

Yeast strains are listed in Table 1. For clarity and unless otherwise stated, geneX will always indicate the homozygous genX/geneX Ura<sup>+</sup> strain. Reint indicates that an SKO1 fused to GFP gene was reintroduced at the LEU2 locus of the C. albicans mutant strains genome. The results showed in the present work were obtained using the RM100 strain and the mutants derived from it, except the genome-wide transcription analyses which were performed using CAF2 as parental strain and the sko1 mutant in this background. Phenotypic results shown in this manuscript were similar for both backgrounds. Yeast strains were grown at 37 °C (unless otherwise stated) in YEPD medium (1% yeast extract, 2% peptone and 2% glucose) or SD minimal medium (2% glucose, 0.67% yeast nitrogen base without aminoacids) with the appropriate auxotrophic requirements at 50 µg/ml (final concentration). pH was adjusted to 4.3 or 6.7. The morphology of cells under different growth conditions was tested using YEPD supplemented with bovine fetal serum (BFS) at different concentrations or SD liquid medium at different pHs supplemented or not with 5% BFS. Morphology of the colonies was analyzed plating 50-100 colony forming units (C.F.U.) on YEPD. Spider medium (1% mannitol, 1% nutrient broth, 0.2% K<sub>2</sub>·HPO<sub>4</sub> and 1.35% agar) and SLADH medium (Gimeno et al., 1992) plates that were incubated for 7 days at 37 °C. Growth in liquid medium was estimated as the absorbance at 600 nm (A<sub>600</sub>). C. albicans was transformed using the lithium acetate method (Köhler et al., 1997).

#### 2.2. Molecular biology procedures and plasmid constructions

Standard molecular biology procedures were used for all genetic constructions (Ausubel et al., 1993). For the disruption of the SKO1 gene, the oligos RSKO1UP5' and RSKO1LW5' (all the oligonucleotides used as primers are listed in Table 2) were used to amplify a 452 bp 5' region flanking the ORF and subcloned in the cloning vector pGEM-T (Promega). Similarly, oligonucleotides RSKO1UP3') and RSKO1LW3' were used to amplify a 436 bp 3' flanking region of the ORF from C. albicans strain SC5314 and subcloned in the cloning vector pGEM-T. The 5' and 3' regions were excised from these constructions using the combination of enzymes Scal-BglII and BamHI-SphI respectively and accommodated in the disruption plasmid pCUB6K1 generating the pIR-12 plasmid, pCUB6K1 comprises the URA3 marker flanked by the hisG gene from Salmonella typhimurium resistance gene (Alonso-Monge et al., 1999). The pIR-12 plasmid was digested with Scal and SphI to force recombination at the SKO1 locus following the URA3-blaster deletion scheme (Fonzi and Irwin, 1993). Genomics DNAs were digested with EcoR I for the southern-blot assay. The probe used to confirm the deletion of the SKO1 gene was generated by PCR amplification using the SKO1COMUP and SKO1COMLW. This strategy was used for the deletion of SKO1 gene either in wild type or hog1 backgrounds (strain CNC15, Table 1). For SKO1 reintegration, a 1587 bp fragment which included SKO1 ORF was amplified and subcloned in the cloning vector pGEM-T by using the primers o-SKO1cup and o-SKO1clw. A NotI-BamHI fragment was then accommodated in the NotI-BamHI restriction site of the plasmid pFA which carries the ACT1 promoter and the URA3 marker (Román et al., 2005) generating the pASKO1c plasmid. Then the gene encoding green fluorescent protein (GFP) was amplified by PCR using the primers o-GFPup and o-GFPlw. The GFP ORF fragment was inserted in the Notl site of the pASKO1c plasmid generating the pAGFPSKO1c plasmid. This plasmid was integrated in the C. albicans genome previous restriction with the enzyme KpnI. The construction was integrated in the genome at the LEU2 locus.

#### 2.3. Drug susceptibility assays

Drop tests were performed by spotting serial dilutions of cells onto YEPD plates supplemented with sodium chloride, sorbitol,  $\rm H_2O_2$ , menadione, Congo red or Calcofluor White at the indicated concentrations. Plates were incubated at 37 °C overnight. Kinetic of susceptibility to oxidants was measured using logarithm phase cells.  $10^7$  cells were transferred to a 1.5 ml tube containing YEPD and the oxidative agents was added to the final concentration indicates. Tubes were incubated at 37 °C with shaking; then 5  $\mu l$  samples were collected at different time points and spotted onto YEPD plates. The plates were incubated for 24 h at 37 °C and photographed.

#### 2.4. Protein extracts and immunoblot analysis

Yeast strains were grown to an optical density of 1 at 37 °C in YEPD medium. To test the kinetic of the phosphorylation, hydrogen peroxide was added to the medium at a final concentration of 10 mM samples were taken at 5, 15 and 30 min after the challenge. Alternatively, different concentrations of hydrogen peroxide were added to cell cultures and samples were collected after 10 min of incubation. The exit from stationary phase assay was performed as follows: overnight cultures were refreshed in pre-warmed YEPD medium to  $A_{600}$  of 0.1; samples were collected after 15 and 30 min after the shift. Cell extracts were obtained as previously indicated (Martín et al., 1993, 2000). Even amounts of proteins were loaded onto gels as assessed by 280 nm measurement of the samples and Ponceau Red staining of the membranes prior to blocking and

### Download English Version:

# https://daneshyari.com/en/article/10939578

Download Persian Version:

https://daneshyari.com/article/10939578

<u>Daneshyari.com</u>