Contents lists available at ScienceDirect

Molecular and Cellular Neuroscience

journal homepage: www.elsevier.com/locate/ymcne

Modulation of Ca_v1.3 Ca²⁺ channel gating by Rab3 interacting molecule

Mathias Gebhart ^{a,b,1}, Gabriella Juhasz-Vedres ^{a,b,1}, Annalisa Zuccotti ^c, Niels Brandt ^d, Jutta Engel ^d, Alexander Trockenbacher ^{a,b}, Gurjot Kaur ^{a,b}, Gerald J. Obermair ^e, Marlies Knipper ^c, Alexandra Koschak ^{a,b}, Jörg Striessnig ^{a,*}

^a Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria

^b Center of Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria

^d Department of Biophysics, Saarland University, Building 76, D-66421 Homburg/Saar, Germany

^e Institute of Physiology and Medical Physics, Medical University of Innsbruck, Fritz-Preglstr. 3, A-6020 Innsbruck, Austria

ARTICLE INFO

Article history: Received 15 February 2010 Revised 19 March 2010 Accepted 25 March 2010 Available online 2 April 2010

Keywords: Calcium channels Channel gating Calcium current inactivation Inner hair cells Hearing

ABSTRACT

Neurotransmitter release and spontaneous action potentials during cochlear inner hair cell (IHC) development depend on the activity of Ca_v1.3 voltage-gated L-type Ca²⁺ channels. Their voltage- and Ca²⁺-dependent inactivation kinetics are slower than in other tissues but the underlying molecular mechanisms are not yet understood. We found that Rab3-interacting molecule- 2α (RIM 2α) mRNA is expressed in immature cochlear IHCs and the protein co-localizes with Ca_v1.3 in the same presynaptic compartment of IHCs. Expression of RIM proteins in tsA-201 cells revealed binding to the β -subunit of the channel complex and RIM-induced slowing of both Ca²⁺- and voltage-dependent inactivation of Ca_v1.3 currents which should allow these channels to carry a substantial window current during prolonged depolarizations. These data suggest that RIM2 contributes to the stabilization of Ca_v1.3 gating kinetics in immature IHCs.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Depolarization-induced Ca²⁺ entry through voltage-gated Ca²⁺ channels (VGCC) into electrically excitable cells is a key process regulating numerous physiological processes. Ten Ca²⁺ channel isoforms within three classes (Ca_v1-3) with different biophysical properties and subcellular localizations (Catterall et al., 2005) accomplish these diverse functions. Among isoforms gating is further fine-tuned by alternative splicing (Lipscombe and Raingo, 2007; Singh et al., 2008), accessory $\alpha 2-\delta$ and β -subunits (Davies et al., 2007; Dolphin, 2003) as well as by other channel associated proteins (Calin-Jageman and Lee, 2008; Dai et al., 2009). Among the high voltage activated Ca²⁺ channels Ca_v2 channels predominantly control presynaptic neurotransmitter release in neurons whereas postsynaptic Ca²⁺ influx through Ca_v1 (L-type) Ca²⁺ channels (LTCCs) modifies gene transcription and synaptic plasticity (Gomez-Ospina et al., 2006; Zhang et al., 2006). However, presynaptic neurotransmitter release at ribbon synapses from sensory cells of retinal photoreceptors and the cochlea is under the control of Ca_v1 rather than Ca_v2 channels. Tonic neurotransmitter release in response to light- or sound-evoked graded changes in membrane potential between -60 and -40 mV requires unusually slow inactivation of L-type Ca^{2+} currents in photoreceptors (Rabl and Thoreson, 2002) and cochlear inner hair cells (Grant and Fuchs, 2008; Johnson and Marcotti, 2008; Lee et al., 2007) and maintenance of window currents over prolonged time periods (McRory et al., 2004). Slow inactivation in IHCs is also a prerequisite to produce Ca^{2+} signals and spontaneous action potentials during IHC development (Marcotti et al., 2003).

In VGCCs inactivation during depolarizations is driven by the Ca²⁺ concentration sensed at the inner channel mouth (Ca²⁺-dependent inactivation, CDI) and by transmembrane voltage (voltage-dependent inactivation, VDI). To prevent efficient inactivation by these processes, LTCCs in photoreceptors developed special strategies. Photoreceptor L-type currents are largely carried by Ca_v1.4 LTCCs which auto-inhibit their own calmodulin (CaM)-dependent CDI by an intramolecular protein interaction within their C-terminus and their remaining VDI is intrinsically slow (Singh et al., 2006). Ca_v1.3 channels in the heart and brain display pronounced CDI and fast VDI (Koschak et al., 2001; Mangoni et al., 2003; Yang et al., 2006) but both processes are very slow in Ca_v1.3 channels of cochlear inner hair cells (Grant and Fuchs, 2008; Johnson and Marcotti, 2008; Marcotti et al., 2003). Strongly reduced CDI in IHCs can be explained by Ca²⁺ binding proteins, such as CaBP1 and CaBP4 (Cui et al., 2007; Lee et al., 2007; Striessnig, 2007; Yang et al., 2006), which compete with CaM binding and Ca^{2+} sensing to the Ca_v1.3 α 1 subunit. Ca_v β 2 was recently shown to slightly affect CDI in CavB2 deficient IHCs, however VDI remained unaltered (Neef

^c Department of Otolaryngology, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany

^{*} Corresponding author.

E-mail address: joerg.striessnig@uibk.ac.at (J. Striessnig).

¹ These authors contributed equally to this work.

^{1044-7431/\$ –} see front matter 0 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.mcn.2010.03.011

et al., 2009). Even if CDI is completely inhibited by these proteins, the remaining VDI of $Ca_v 1.3$ currents in IHCs is still much slower than the VDI of $Ca_v 1.3$ currents in heart, brain or heterologously expressed

 $Ca_v 1.3$ channel complexes (Koschak et al., 2001; Mangoni et al., 2003; Platzer et al., 2000). So far the molecular basis for this physiologically relevant difference is unclear. The underlying mechanisms could be

Fig. 1. A flag-tagged I–II-linker of Ca_v1.3 channels targets β subunits to the plasma membrane in tsA-201 cells. Immunofluorescence images of C-terminally V5-tagged β subunits and C-terminally flag-tagged I–II-linker of Ca_v1.3 (I–II_{flag}) heterologously expressed in tsA-201 cells. (A–C) Expression of I–II_{flag} (A), palmitoylated β 2a_{V5} (B), and the palmitoylation deficient _{C3S/C4S} β 2a_{V5} (C). (D) Expression of only β 1a_{V5}, β 4_{V5}, β 4_{V5}, and _{C3S/C4S} β 2a_{V5}. Note that β 4_{V5} shows nuclear localization as expected from previous studies. (E) Co-expression of the flag tagged I–II-linker and the indicated C-terminally V5 tagged β -subunits. (F) Expression of either I–II_{flag} ^{W441A} alone or together with _{C3S/C4S} β 2a_{V5}, respectively. Representative cells from 3 independent experiments are shown. Scale bar = 10 µm.

Download English Version:

https://daneshyari.com/en/article/10956703

Download Persian Version:

https://daneshyari.com/article/10956703

Daneshyari.com