

www.elsevier.com/locate/ymcne Mol. Cell. Neurosci. 28 (2005) 747-756

Multiple motifs regulate the trafficking of GABA_B receptors at distinct checkpoints within the secretory pathway

Sophie Restituito, ^{a,1} Andrés Couve, ^{a,b} Hinayana Bawagan, ^c Sabine Jourdain, ^d Menelas N. Pangalos, ^{d,2} Andrew R. Calver, ^d Katie B. Freeman, ^c and Stephen J. Moss ^{a,e,*}

Received 13 October 2004; revised 8 December 2004; accepted 16 December 2004

γ-Aminobutyric acid type B receptors (GABA_B) are G-protein-coupled receptors that mediate GABAergic inhibition in the brain. Their functional expression is dependent upon the formation of heterodimers between GABA_BR1 and GABA_BR2 subunits, a process that occurs within the endoplasmic reticulum (ER). However, the mechanisms that regulate receptor surface expression remain largely unknown. Here, we demonstrate that access to the cell surface for GABA_RR1 is sequentially controlled by an RSR(R) motif and a LL motif within its cytoplasmic domain. In addition, we reveal that msec7-1, a guanine-nucleotideexchange factor (GEF) for the ADP-ribosylation factor (ARF) family of GTPases, critical regulators of vesicular membrane trafficking, interacts with GABABR1 via the LL motif in this subunit. Finally, we establish that msec7-1 modulates the cell surface expression of GABAB receptors, a process that is dependent upon the integrity of the LL motif in GABA_RR1. Together, our results demonstrate that the cell surface expression of the GABA_RR1 subunit is regulated by multiple motifs, which act at distinct checkpoints in the secretory pathway, and also suggest a novel role for msec7-1 in regulating the membrane trafficking of GABABR1 subunits.

© 2004 Elsevier Inc. All rights reserved.

Available online on ScienceDirect (www.sciencedirect.com).

Transfer of the Selence Direct (WW. selence direct control

Introduction

GABA_B receptors are GPCRs that mediate GABAergic inhibition in the brain. They exert their effects mainly by regulating voltage-gated Ca²⁺ channels and G-protein activated inwardly rectifying K⁺ channel (Calver et al., 2002; Couve et al., 2000). Two GABA_B receptor subunits, GABA_BR1 and GABA_BR2, have been identified. In addition, several splice variants have been described for GABA_BR1 (Calver et al., 2002; Couve et al., 2000; Kaupmann et al., 1997). Gene knock-out studies have revealed that GABA_BR1 and GABA_BR2 are essential components of CNS receptors (Gassmann et al., 2004; Prosser et al., 2001; Schuler et al., 2001; Thuault et al., 2004). Functional GABA_B receptors are heterodimers formed by GABABR1 and GABABR2 subunits. Interestingly, heterodimerization has been shown for many GPCRs, but to date, GABA_B receptors are unique in their absolute requirement for heterodimerization for functional expression (Couve et al., 2000; Nelson et al., 2002).

The regulation of GABA_B receptor assembly and delivery to the plasma membrane are likely to be of major significance in controlling the efficacy of synaptic inhibition, as in contrast to most other GPCRs, GABAB receptors do not undergo agonistdependent internalization and exhibit long cell surface half-lives (Fairfax et al., 2004; Perroy et al., 2003). Studies on other oligomeric transmembrane proteins have revealed that the cell surface expression is controlled at multiple checkpoints along the secretory pathway to ensure that only properly folded and assembled receptors access the plasma membrane (Ma et al., 2002; Ren et al., 2003). Indeed, proteins synthesized in the ER travel between the various intracellular compartments using different membrane vesicle systems, such as COPI, COPII, and clathrin-coats, that can modulate surface expression (Barlowe, 2000; Kirchhausen, 2000). However, proteins involved in the GABA_B receptors trafficking are largely unknown. To address these issues, recombinant expression has been primarily utilized.

^aDepartment of Pharmacology, University College London, London WC1E 6BT, UK

^bCentro de Neurociencias Intergrades y, Programa de Fisiologia Biofisica, ICBM, Faculted de Medicina, Universidad de Chile Santiago 1027

^cDepartment of Comparative Genomics, Genetics Research, GlaxoSmithKline Pharmaceuticals, Collegeville, PA 19426, USA

^dNeurology and GI CEDD, GlaxoSmithKline, Harlow, Essex, CM19 5AW, UK

^eDepartment of Neuroscience, University of Pennsylvania, School of Medicine, 215 Stemmler Hall, PA 19104-6704, USA

Abbreviations: $GABA_B$, γ -aminobutyric acid type B receptors; GPCR, G-protein-coupled receptors; ER, endoplasmic reticulum; LL, di-leucine; GEF, guanine-nucleotide-exchange factor; ARF, ADP-ribosylation factor; TGN, trans-Golgi network; PH, pleckstrin homology domain.

^{*} Corresponding author. Department of Neuroscience, University of Pennsylvania, School of Medicine, 215 Stemmler Hall, PA 19104-6704, USA. Fax: +1 215 898 1347.

E-mail address: sjmoss@mail.med.upenn.edu (S.J. Moss).

¹ Present address: Department of Biochemistry, NYU Medical Center, 550 First Avenue, New York, NY 10016, USA.

² Present address: Wyeth Research, CN8000, Princeton, NJ 08543, USA.

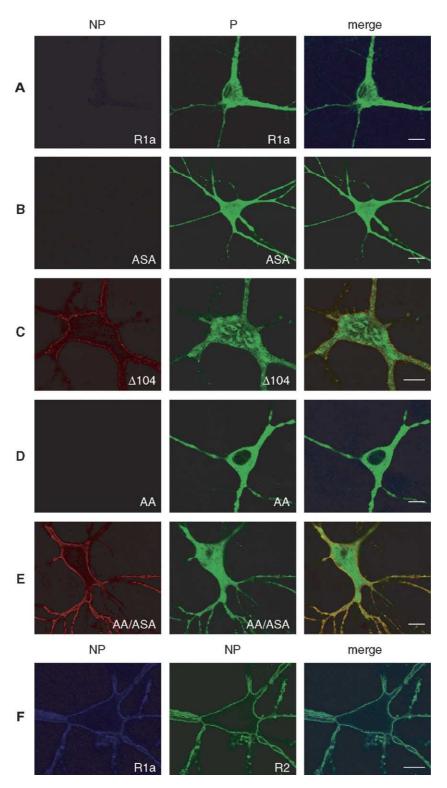


Fig. 1. Cell surface expression of wild type and mutant $GABA_BR1$ constructs in hippocampal neurons. Cultured hippocampal neurons were microinjected with $GABA_BR1$ -AA (A), $GABA_BR1$ -AA (B), $GABA_BR1$ -AA (C), $GABA_BR1$ -AA (D), $GABA_BR1$ -AA (A), or $GABA_BR1$ and $GABA_BR2$ (F). For A to E, 30 h after microinjection neurons were stained under non-permeabilized (NP) conditions with 9E10 antibody and a Texas red conjugated secondary antibody. Neurons were then permeabilized (P) and stained with 9E10 antibody and a secondary conjugated to FITC. For F, neurons were stained under non-permeabilized (NP) conditions with 9E10 antibody, followed by a Cy-5 secondary antibody for $GABA_BR1$ and HA antibody followed by a Texas red secondary antibody for $GABA_BR2$. The scale bar = 10 μ m.

Download English Version:

https://daneshyari.com/en/article/10956845

Download Persian Version:

 $\underline{https://daneshyari.com/article/10956845}$

Daneshyari.com