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a  b  s  t  r  a  c  t

Background:  Influenza  vaccine  effectiveness  (VE)  is  increasingly  estimated  using  the case-test  negative
study  design.  Cases  have  a symptom  complex  consistent  with  influenza  and  test  positive  for  influenza,
while  non-cases  have  the  same  symptom  complex  but test  negative.  We  aimed  to  determine  a  parsimo-
nious  logistic  regression  model  for this  study  design  when  applied  to patients  in the  community.
Methods:  To  determine  the minimum  covariate  set  required,  we used  a  previously  published  systematic
review  to find  covariates  and  restriction  criteria  commonly  included  in case-test  negative  logistic  regres-
sion models.  Covariates  were  assessed  for inclusion  using  a  directed  acyclic  graph.  We  used  data  from  the
Victorian  Influenza  Sentinel  Practice  Network  from  2007  to  2013, excluding  the  pandemic  year  of  2009,
to test  the  model.  VE  was  estimated  as (1 − adjusted  OR)  * 100%.  Changes  in model  fit from  addition  of
specified  covariates  were  examined.  Restriction  criteria  were  examined  using  change  in VE  estimate.  VE
was  estimated  for  each  year,  all years  aggregated,  and for influenza  type  and  sub-type.
Results:  Using  publicly  available  software,  the directed  acyclic  graph  indicated  that  covariates  specifying
age,  time  within  the  influenza  season,  immunocompromising  comorbid  conditions  and  year  or  study
site,  where  applicable,  were  required  for closure.  The  inclusion  of  sex  was not  required.  Inclusions  and
exclusions  were  validated  when  testing  the  variables  (when  collected)  with  our  data.  Restriction  by  time
between  onset  and  swab  was  supported  by the  data. VE  for all years  aggregated  was  estimated  as  53%
(95%CI  38,  64).  VE  was estimated  as  42% (95%CI  19, 59)  for H3N2,  75%  (95%CI  51,  88)  for  H1N1pdm09  and
63%  (95%CI  38, 79)  for influenza  B.
Conclusion:  Theoretical  covariates  specified  by the  directed  acyclic  graph  were  validated  when  tested
against  surveillance  data.  A parsimonious  model  using  the  case  test  negative  design  allows  regular
estimates  of VE  and  aggregated  estimates  by  year.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Circulating influenza viruses can change every year, often
requiring reformulated vaccines. Since these vaccines are con-
sidered to be variations of a licensed vaccine rather than a new
vaccine, annual trials to establish efficacy are not required and
would moreover be impractical [1]. However, monitoring of the
potential impact of publicly funded influenza vaccination cam-
paigns by estimating the effectiveness of annual influenza vaccines
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is an important programme evaluation strategy and has become
increasingly common in recent years.

Timely evaluation has been made possible by the develop-
ment of a study design, known variously as the test negative
design [2] or the case test negative design [3]. In this study
design, cases have a symptom complex consistent with influenza
and test positive for influenza while non-cases, often referred
to as controls, have the same symptom complex but test nega-
tive for influenza. In published studies, testing has been almost
uniformly performed by reverse transcriptase polymerase chain
reaction (RT-PCR) assays. The study design, where cases and non-
cases are ascertained throughout the season before their case status
is known, together with the use of PCR assays, allows for rapid
annual influenza vaccine effectiveness (VE) estimates. This design,
although similar to a prospective case control study, is not strictly
a case control study because case status is not known, and cases
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and non-cases are both still theoretically at risk of influenza, at
ascertainment.

The first study using this design was based on data from a
Canadian sentinel practice network and was published in 2005 [4].
Four years later, similarly designed exploratory studies were pub-
lished from Australia [5], the United States [6] and Europe [7]. Since
then the number of studies using variations of this method have
expanded with more than 85 studies published by September 2014
[8]. Increasing sample sizes and improved analytic approaches have
allowed many study sites to report interim estimates of influenza
VE before the end of the influenza season in temperate northern
[9,10] and southern hemispheres [11].

The early test negative studies used a modelling study, which
had aimed to determine the utility of rapid tests for estimating
influenza VE, as their theoretical justification [12]. The modelling
study explored VE estimates using cohort, case control and test-
negative designs and showed the latter design gave comparable
estimates of VE to the two conventional study designs when test
specificity was high. PCR tests in good laboratories approach 100%
specificity [13].

Since the modelled justification for the test negative design,
studies estimating VE have been published in parallel with stud-
ies validating the design [2,3]. It has been further shown that, in
the absence of selection bias, the test negative design results in VE
estimates that are not different from the gold standard randomised
controlled trial [14].

Not surprisingly for a novel study design, there is inconsistency
in the model specifications used to estimate VE, with 85 recently
reviewed studies using 68 different statistical covariate sets [8]. In
this study we aimed to review the covariates used in published
test-negative community-based studies and to assess their theo-
retical relevance using a directed acyclic graph. We  further aimed
to test the theoretical conclusions from the directed acyclic graph
against seven years of data from the Victorian Sentinel Practice
Influenza Network (VicSPIN) and to estimate VE each year, a global
VE over specified aggregated years and influenza type and sub-type
estimates for aggregated years.

2. Methods

2.1. Development of a directed acyclic graph

Using a recent systematic review we determined the most com-
mon  covariates used by published test negative design studies that
estimated influenza VE amongst patients presenting in the commu-
nity [8]. We  then constructed a directed acyclic graph, including
potential confounders and explanatory variables that were used
in >10% of published studies [8], without considering selection
bias. Directed acyclic graphs can provide a visual representation
of complex causal relationships between measured or unmeasured
variables in a study. Closure of a directed acyclic graph involves the
identification of a minimum set of variables that must be condi-
tioned on, such as through adjustment, stratification or restriction,
to provide an unbiased estimate of the causal relationship between
an exposure and an outcome, given the assumptions contained in
the graph. We  tested our directed acyclic graph for closure using
DAGitty, a software package available in the public domain [15].

2.2. Data source: the Victorian Sentinel Practice Influenza
Network

General practitioners (GPs) were recruited to the Victorian
Sentinel Practice Influenza Network (VicSPIN, formerly the Gen-
eral Practice Sentinel Surveillance System) as described elsewhere
[16]. Participants were recruited by the GPs based on patient

influenza-like illness (ILI) symptoms defined loosely as fever, cough
and fatigue [17]. Participants were selected for swabbing at the dis-
cretion of the GP, with guidelines to swab only when four or fewer
days had elapsed between symptom onset and consultation. GPs
were asked to collect data on the patient’s date of symptom onset,
age, sex, influenza vaccination status (based on patient recall or
general practice record) and current year (season) date of vacci-
nation. From 2011 onwards binary variables indicating seasonal
influenza vaccination in the previous year, based on patient report,
and the presence of comorbidities were also collected.

Participants were included in this study if they presented to
a VicSPIN general practitioner with ILI during the 2007–2013
influenza surveillance periods (weeks 18–44) and provided a nasal
or throat swab for testing. Participants were excluded if they
presented during the pandemic year of 2009, if they reported vac-
cination with H1N1 monovalent vaccine in 2010, if they tested
positive for influenza C, or if data on vaccination status, age or sex
were missing. We assumed vaccination more than 14 days prior to
onset where current season vaccination date was missing.

Nose and/or throat swabs were tested for influenza at the Vic-
torian Infectious Diseases Reference Laboratory (VIDRL) using a
variety of PCR assays, which evolved over the study period, as
described elsewhere [18–20]. Influenza type and sub-type were
also recorded.

2.3. Testing the causation model from the directed acyclic graph

We  used the case-test negative design to estimate influenza
VE. We  used seven years of VicSPIN data, 2007–2013 inclusive but
omitting the pandemic year of 2009, to derive a series of regres-
sion models, based on the directed acyclic graph (Fig. 1). Crude and
adjusted odds ratios (OR) and 95% confidence intervals were calcu-
lated using logistic regression. VE was  estimated as (1 − OR)*100%.
For covariates, adjustment was assessed through changes in model
fit, and restriction criteria through changes in VE estimate, as
described below.

To assess covariates for adjustment, a series of bivariate models
were created beginning with a crude estimate and incorporating
each covariate required by the directed acyclic graph, where col-
lected by VicSPIN. We  tested the change in VE estimates due to
each covariate using the likelihood ratio (LR) test. This process
was repeated with data stratified by year and influenza type or
subtype. Covariates were retained in the model where adjustment
was considered to improve model fit, because the covariate was a
confounder or predictor of influenza, where the LR test was conven-
tionally significant (p < 0.05), or the resulting VE differed by 10 or
more percentage points from the crude estimate in any overall, year
specific or subtype specific estimate. p-Values were adjusted using
the Bonferroni correction to account for multiple testing. Covari-
ates were assessed as above both pre and post the application of
retained restriction criteria, to maximise the available sample size.
Finally, stepwise regression was performed, to assess the change in
VE from the removal of each covariate.

Potential restriction criteria, specifically time between vaccina-
tion and onset and time between onset and swab, were applied
after covariate adjustment. Time between vaccination and onset
was required to be >14 days, the consensus on time needed for pro-
tective antibody production to occur. Time between onset and swab
was restricted based on the observation of decreased viral shed-
ding with time since symptom onset [21]. We  assumed decreased
viral shedding with time may  decrease the likelihood of viral RNA
detection and hence the classification as influenza-infected. As
restriction criteria aim to exclude patients where non-differential
misclassification is thought to have occurred, resulting in a VE esti-
mate biased towards the null, restriction criteria were retained if
they appeared to be working as hypothesised and increased the
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