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Motivation:  The  macromolecular  surfaces  associated  with  proteins  and  macromolecules  play a  key  role
in determining  their  functionality  and  interactions,  and  are  also  of importance  in structural  analysis
and  classification.  As  a result  of  their  interaction  with their  environment,  the  macromolecular  surfaces
experience  random  conformational  deformations.  Consequently,  a realistic  description  of  the molecular
surface  must  be  invariant  under  these  deformations.  Further,  the  motion  associated  with  disconnected
regions  on  the  molecular  surface  may  be  correlated.  This  property  is  known  as  the  allosteric  effect.  In
this  paper,  we address  these  two  requirements.  To this  end, we propose  an  approach  based  on discrete
differential  geometry  and  the  fractional  Fokker–Planck  equation  which  provides  an  isometrically  invari-
ant  and allosteric  aware  description  of  macromolecular  surfaces.  Our  method  is  applied  to the  influenza
neuraminidase.

© 2015  Published  by  Elsevier  Ltd.

1. Introduction

The shape of macromolecular structures, such as proteins, playQ3
a fundamental and multifaceted role in their classification, evo-
lution [1], functionality [2], description [3] and in defining their
mutual interactions [4]. For instance, the potential docking of two
macromolecular structures is, in a large part, determined by the
geometrical compatibility in between the receptor and the ligand
[5]. The shape of a protein is more resilient than the underlying
amino acid sequences, as the former must be preserved over time
in order to maintain the functionality, while the latter is prone to
mutations. As a result, methods based on macromolecular shape
are more suited than phylogenetic approaches, in order to study
evolution over very long periods of time [1].

The creation of an informative and compact description of
macromolecular shapes is of paramount importance in structural
proteomics, macromolecular docking, computational vaccinology
and in the study of protein evolution, amongst others [5,6]. Yet,
this is not the end of the story. Macromolecules undergo ran-
dom fluctuations of their shape (conformational changes). This
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characteristic is due to their interaction with their environment [7]
as well as their interactions with one another. For instance, confor-
mational changes are caused by the induced fit between a receptor
and a ligand during macromolecular docking [4]. As a result,
an accurate and robust shape description should be invariant,
under the most common deformations, in order to be of practical
relevance.

Many approaches have been proposed to allow for the invari-
ant description of macromolecular surfaces. The reader is referred
to [8] for a complete review. For instance, some of these methods
are based on the Bayesian analysis of backbone deformations [9].
Other approaches employ the spherical harmonics description of
the molecular surface [10] or concern the projection of the molec-
ular surface on Zernike functions [11]. Further, there are techniques
that utilise the convolution kernel [12] or consider the heat prop-
agation on the molecular surface [13] and [14]. Yet, all of these
methods have the same drawback in that they fail to put discon-
nected regions into relation. Recall that this ability is a required
characteristic in order to describe allosteric effects. Only recently
[15] has proposed such an approach (although not invariant). How-
ever, their method provides a description which is restricted to the
residues, while our work as detailed in this paper considers the
entire macromolecular surface.

In this paper, we propose an approach based on discrete dif-
ferential geometry [16,17] and the Fokker–Planck equation [18],
from which an invariant, compact and informative shape signature
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(or descriptor) is extracted. Our method provides invariance under
isometry (non-elastic deformations). Further, it may  also be made
invariant under local dilatation, by following an approach based on
Gaussian curvatures [19]. From a macromolecular point of view,
an isometric invariance corresponds to a macromolecular surface
formed by a very large, potentially infinite, number of rotamers
or hinges [6] which account for non-elastic deformations. Conse-
quently, this invariance is a generalisation of the backbone and side
chains rotation invariance which is at the basis of macromolecular
docking algorithms such as the FireDock [6] method.

Our shape signature thus allows for the description of discon-
nected regions, such as those associated with allosteric effects [20].
This is important because, despite of the fact that the conforma-
tional deformations are random, they may  be correlated in between
themselves over regions which are apparently disconnected. This
implies that a purely local shape analysis may  not be entirely sat-
isfactory in that particular case.

Our paper is organised as follows. In Section 2, we apply dis-
crete differential geometry to macromolecular surfaces in order
to obtain an intrinsic description. In Section 3, we review some
of our earlier results for the description of macromolecular sur-
faces in terms of the heat equation. This approach is reformulated
in terms of a Gaussian random walk in Section 4. This random walk
is generalised, in Section 5, in order to obtain a non-local, isomet-
rically invariant description of macromolecular surfaces based on
the fractional Fokker–Planck equation. Experimental results for the
influenza neuramidase are presented in Section 6, while a conclu-
sion follows in Section 7.

2. Macromolecular surface geometry and discrete
differential geometry

In this section, we present the mathematical framework from
which an isometrically invariant description of a macromolecu-
lar surface may  be obtained. We  assume that the macromolecular
surface is represented in terms of a triangular tessellation (trian-
gular mesh) which may  be assimilated to a discrete graph. This
is the most common representation adopted amongst molecular
modelling software.

In order to apply our approach, some notions of discrete dif-
ferential geometry are required which are briefly reviewed here.
We  chose differential geometry as our mathematical framework
for two reasons. Firstly, the differential geometry allows for an
intrinsic description (i.e. no external reference frames) of the
macromolecular surface which is required in order to obtain
invariance under isometric deformations. Secondly, because the
description is intrinsic, the geometry of the macromolecular sur-
face becomes Riemannian (i.e. a curved space as the molecule is
not embedded in Euclidean space anymore) which means that the
mathematical description should be consistent with such geome-
try. One of the most important notions in differential geometry is
de Rham operator (also known as Laplace–Beltrami operator which
is a generalisation of the Laplacian) which characterises both the
geometry (the metric aspect, e.g. distances, scalar products) and
the topology (holes, handles, etc.) of the underlying manifold. The
de Rham operator is defined as:

�f  = (dd∗ + d∗d)f (1)

where df = (∂f�1...�k
/∂x�)dx� ∧ dx�1 ∧ . . .dx�k is the exterior

derivative, f a differential k-form and ∧ is the exterior product, while
d∗ (also written as ı) is the codifferential which is defined as

d∗ = −1kn+n+1 ∗ d ∗ (2)

where ∗ω�1...�n−k
= 1/k! ω�1...�k

√∣∣det g
∣∣ ε�1...�k�1...�n−k

is the

dual operator, g is the metric associated with the macromolecular

surface, ε is the completely antisymmetric tensor and n is the
dimensionality of the manifold which is two for a macromolecu-
lar surface. For a scalar function or 0-form, the de Rham operator
reduces to:

� = d∗d (3)

The discrete counterpart of differential geometry, discrete
differential geometry [16,17], which is required as a discrete rep-
resentation is used for the macromolecular surface, is based on the
concept of the incidence matrix. Let �p

j
be a p-simplex or cell. For

instance, a 0-simplex is a vertex or node, a 1-simplex is an edge and
a 2-simplex is a triangle. The incidence matrix NT

p encodes the rela-
tionships in between the p-cells and the (p − 1)-cells and is defined
as

(Np)ij =

⎧⎪⎪⎨
⎪⎪⎩

0 ⇔ �p−1
j

/∈ ∂�p
i

1 ⇔ O(�p−1
j

) = O(�p
i

)

−1 ⇔ O(�p−1
j

) = −O(�p
i

)

(4)

where O  is the orientation operator which is equal to +1 when the
orientation of the p-simplex is positive and −1 otherwise. Conse-
quently, Np is equal to zero if the (p − 1)-simplex j is not in the
neighbourhood of the p-simplex i. Secondly, it is equal to +1 if the
orientation of the (p − 1)-simplex j is compatible with the one of
the p-simplex i. Finally, Np is equal to −1 if their respective orien-
tations are not compatible. In the particular case of an edge and a
vertex, the incidence matrix is equal to 1 if the edge is entering the
vertex and −1 otherwise.

From the incident matrix, it is possible to define a discrete exte-
rior derivative and a discrete codifferential [16,17] by introducing
a discrete dual and by associating a metric to each p-simplex:

dp∼NT
p

d∗
p∼(NT

p+1)
∗ = ∗NT

p∗ = G∗
n−p+1NT

pG−1
p

(5)

where Gp is the metric (a symmetric matrix) associated with the
p-simplex. From these equivalences, we may  define the discrete de
Rham operator as [16,17]:

Lp = NpN∗
p + N∗

p+1Np+1∼� ≡ dd∗ + d∗d (6)

In our work, we are more interested in the Laplacian associated
with the nodes, since our description is based on the Fokker–Planck
equation which only required the node Laplacian [21]. In this case,
the de Rham operator takes a particularly simple form:

L0 = N0N∗
0 + N∗

1N1 = N0AT G−1
1 A (7)

The metrics may  be defined in various ways [16,17]. In our case,
the metric associated with the edges G1, is defined as the affinity
in between connected vertices:

(G1)ij = 1√
2	�

exp

[
−

∥∥xi − xj

∥∥2

2�2

]
(8)

where � = med  {||xi − xj||} is the median of the length of the edges
[22] while G0, the metric associated with the vertices, is a diago-
nal matrix of the areas of the neighbourhood associated with each
vertex [16,17]. The neighbourhood may  be defined either as the 1-
ring neighbourhood (the total area of all the triangles connected
to vertex i) or from the dual cell associated with a particular ver-
tex. It may  be constructed, for instance, by joining the barycentres
of all the triangles connected to vertex i through their respective
common edges.
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