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a  b  s  t  r  a  c  t

Seasonal  influenza  imposes  a significant  worldwide  health  burden  each  year.  Mathematical  models  help
us to  understand  how  changes  in  vaccination  affect this  burden.  Here,  we  develop  a  new  dynamic  trans-
mission  model  which  directly  tracks  the  four dominant  seasonal  influenza  strains/lineages,  and  use  it to
retrospectively  examine  the impact  of  the  switch  from  a targeted  to a universal  influenza  immunization
program  (UIIP)  in the Canadian  province  of Ontario  in  2000.  According  to our model  results,  averaged
over  the  first  four  seasons  post-UIIP,  the  rates  of influenza-associated  health  outcomes  in  Ontario  were
reduced  to  about  half  of  their  pre-UIIP  values.  This  is  conservative  compared  to the results  of  a study  esti-
mating  the  UIIP  impact  from  administrative  data,  though  that  study  finds  age-specific  trends  similar  to
those presented  here.  The  strain  interaction  in our  model,  together  with  its flexible  parameter  calibration
scheme,  make  it readily  extensible  to studying  scenarios  beyond  the  one  explored  here.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Seasonal influenza is responsible for a significant health bur-
den each year, infecting roughly a tenth of the world’s population
(e.g. [1]). Large-scale changes in a population’s vaccination pat-
terns provide a good “natural laboratory” for better understanding
the dynamics of an infectious disease such as influenza, and for
testing epidemiological models. Just such a scenario took place
in the province of Ontario, Canada, which in 2000 initiated the
world’s first large-scale universal influenza immunization program
(UIIP), whereby influenza vaccination was provided for free to all
residents. Subsequently, Kwong et al. [2] utilized provincial admin-
istrative data to study the impact of the UIIP on influenza-related
health outcomes. Here, our objective was to develop a general-
purpose seasonal influenza model, use it to simulate Ontario’s UIIP
adoption, and to test the results against those of [2].

Several key factors determined the design of our model. First and
foremost, with a basic reproduction number R0 estimated to range
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from 1.6 to 3.9 [3,4], the infectiousness of influenza is sufficiently
low that herd immunity is important even at modest levels of vac-
cine coverage within a population; self-consistently accounting for
herd immunity requires a dynamic transmission model. Second, we
strove to make the model robust and flexible enough to be applied
to a wide range of scenarios beyond the one explored here. Pub-
lic health systems worldwide have a wide array of existing (e.g.
inactivated, live-attenuated, adjuvanted, unadjuvanted) and new
(e.g. quadrivalent, cell-cultured) seasonal vaccines to choose from,
and with numerous additional influenza vaccines on the horizon
[5], the selection is likely to become wider still. Mathematical mod-
els can serve as powerful tools to assist policymakers in the optimal
adoption of these technologies.

We  wanted to implement a transmission model sophis-
ticated enough to reproduce the key dynamics of seasonal
influenza – herd immunity, strain interaction, waning immu-
nity, dependence on population contact patterns – while
at the same time simple enough to be straightforwardly
calibrated to real-world data. Accordingly, we  chose a
Susceptible–Infected–Recovered–Vaccinated compartmental
model as our basic paradigm. We  extended this approach to
explicitly model the four dominant strains/lineages of seasonal
influenza, with cross-protection where relevant. To our knowledge,
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previous age-structured influenza models have included a maxi-
mum  of three strains, and no three-strain models have considered
cross-protection [6,7]. Furthermore, we equipped the model with
an approximate Bayesian computation (ABC) [8] parameter fitting
scheme which is robust, flexible, and directly propagates the effect
of parameter uncertainty to the model results.

Explicitly modeling both lineages of influenza B introduces an
added level of complexity in how vaccination is implemented
within the model. The reason is that current seasonal trivalent
influenza vaccines (TIVs) include both dominant circulating sub-
types of influenza A (H1N1, H3N2), but only one of the two
circulating influenza B lineages (Victoria, Yamagata). Hence, there
is the possibility of influenza B vaccine lineage mismatches: For
example, B/Victoria is chosen for inclusion in a given season’s TIV,
but B/Yamagata ends being the dominant B lineage circulating that
season. Historically, such a mismatch has occurred in roughly half
of all seasons. Thus, when modeling the efficacy of TIV against
influenza B over multiple seasons, care must be taken that the
match/mismatch proportion reflects what happens in real life. This
becomes especially important if one wishes to use the model for a
comparison of TIV with quadrivalent (QIV) vaccines, which includes
both B lineages; having too low or too high a rate of B lineage
match for the TIV will under- or over-estimate, respectively, the
effectiveness of TIV relative to QIV.

2. Materials and methods

2.1. Age structure and demographics

Our model was age-stratified [6,9], enabling us to include age-
dependent contact patterns in calculating the force of infection.
Births, deaths and aging were implemented; age-specific birth and
death rates can be specified for the population, and these can be
made to vary on a year-by-year basis. More detail on age structure
and demographics in the model is given in A.1.

2.2. Epidemiology

The model explicitly tracks the two dominant A strains (H1N1,
H3N2), and the two B lineages (Victoria, Yamagata) comprising
seasonal influenza. We  assumed that A and B cross-protection,
both natural and vaccine-conferred, is negligible, and only allowed
for the possibility of pairwise cross-protection between the two  A
strains, and between the two B lineages, respectively. We  modeled
seasonality in transmission as a sinusoidal variation in the force of
infection, with a period of one year.

Immunity to influenza strains conferred by infection is only tem-
porary, due to a combination of declining antibody levels and the
continual antigenic drift of the influenza virus; see e.g. [10]. We
assumed that individuals lose their immunity to a given strain k
at a constant rate �k [6,11,12]. The inverse, 1/�k, is then the mean
duration of natural immunity. Details of the transmission model
are given in Appendix A.2.

2.3. Vaccination

Vaccination occurs over a finite time window, the yearly start
time and length of which are input parameters. The vaccine
is characterized by its efficacies against each of the circulating
strains/lineages of influenza. TIV contains two A strains and only
one B lineage, thus each season one of the B lineages is matched by
the vaccine, while the other is mismatched. Hence, for B, the model
requires both a matched and a mismatched efficacy as input. How
well a given season’s vaccine protects against influenza B is deter-
mined by the proportion of matched and mismatched B lineages
that are in circulation that season; in a dynamic model, as in real

life, this proportion is not known a priori. In light of this we  made
the accuracy of the choice a fitted parameter which can vary any-
where from a random choice to a “best guess”. Details are given in
Appendix A.3.

Vaccine-conferred immunity also wanes due to declining anti-
body levels and antigenic drift, and this process was implemented
in the model analogously to the waning of natural, infection-
conferred immunity, i.e. via a constant rate of immunity loss �k
for strain k. Since vaccine-conferred immunity is generally thought
to be less robust than natural immunity, it was considered impor-
tant that the model allow the two  to wane at different rates. Details
are given in Appendix A.3.

3. Model calibration

Since our understanding of the natural history of influenza is
still far from complete, choosing realistic values for some of the
parameters in the model poses a significant challenge. We  adopted
an approximate Bayesian computation (ABC) scheme [8] analogous
to one used previously for fitting human papillomavirus models
[13,14]:

(1) Each model input parameter to be fitted is given a uniform prior
distribution between some minimum and maximum;

(2) Model outputs (model summary statistics) to be fitted are cho-
sen. For each, a minimum and maximum value are chosen, thus
defining an allowable target interval.

(3) Sets of parameters are drawn from the prior distributions. Latin
hypercube sampling [15] is used in order to obtain a more even
coverage of the parameter space with fewer samples than sim-
ple random sampling would yield.

(4) Each set of parameters drawn is used in one model run. The pos-
terior parameter distribution consists of all sets of parameters
which result in a model run in which all outputs simultaneously
satisfy their respective allowable target ranges.

In this way, even though we  may  know little or nothing about the
true value of an individual parameter (e.g. natural cross-protection;
see Table 1), the posterior parameter distribution will consist only
of combinations of parameters that yield reasonable model outputs.
We restricted our fitting to natural history parameters, that is,
parameters intrinsic to influenza itself, rather than parameters
describing the population (e.g. birth rate, vaccine uptake, contact
patterns), since natural history parameters are in general much
more uncertain. Also, natural history parameters can be considered
largely independent of the population, thus a posterior distribu-
tion obtained for one setting can be applied to another, as long as
both populations possess a broadly similar lifestyle and average
health status (e.g. if both are developed countries). This allowed us
to exploit the availability of more suitable calibration target data
for the US rather than for Canada; we conducted our natural history
calibration in the former setting and applied the results to the latter.
A total of 5000 fitting simulations were run, yielding 181 posterior
(i.e. accepted) parameter sets. Details are given in Appendix B.

4. Modeling Ontario’s transition to universal influenza
immunization

Using the posterior parameter sets yielded by our model
calibration above, we performed simulations of Ontario’s adop-
tion of a universal influenza immunization program (UIIP). For
each simulation, one of the 181 posterior parameter sets was
drawn at random, together with a new random seed (thus pre-
venting two draws of the same parameter set from producing
identical simulation results). Sets of 100, 500 and 1000 such
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