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a b s t r a c t

Background: Prior research has shown a correlation between poor dietary habits and countless negative
health outcomes such as heart disease, diabetes, and certain cancers. Automatic monitoring of food
intake in an unobtrusive, wearable form-factor can encourage healthy dietary choices by enabling in-
dividuals to regulate their eating habits.
Methods: This paper presents an objective comparison of two of the most promising methods for digital
dietary intake monitoring: piezoelectric swallow sensing by means of a smart necklace which monitors
vibrations in the neck, and audio-based detection using a throat microphone.
Results: Data was collected from twenty subjects with ages ranging from 22 to 40 as they consumed a
variety of foods using both devices. In Experiment I, we distinguished sandwich, chips, and water. In
Experiment II, we distinguished nuts, chocolate, and a meat patty. F-Measures for the audio based
approach were 91.3% and 88.5% for the first and second experiments, respectively. In the piezo-based
approach, F-measures were 75.3% and 79.4%.
Conclusion: The accuracy of the audio-based approach was significantly higher for classifying between
different foods. However, this accuracy comes at the expense of computational overhead increased
power dissipation due to the higher sample rates required to process audio signals compared to inertial
sensor data.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Healthy eating can reduce the risk of heart disease, stroke,
diabetes, and several cancers. In 2008, medical costs associated
with obesity were estimated at $147 billion, and the Centers for
Disease Control (CDC) believes that the best areas for treatment and
prevention are monitoring behavior and environment settings
(Centers for disease control, 2014). Wireless technologies and
health-related wearable devices have the potential to enable
healthier lifestyle choices. These devices and systems are designed
to encourage behavior modifications needed to reduce the risk of
obesity and obesity-related diseases (Dorman et al., 2010).

Studies have shown that the number of swallows recorded
during a day strongly correlate with weight gain on the following
day (Stellar and Shrager, 1985). This provides motivation for the
analysis of food intake patterns based on volume. Though many
wearable devices have been designed for monitoring activity
(Freedson et al., 1998; 2011; Patel et al., 2012), automatically and
accurately inferring eating durations and patterns in a non-
intrusive manner has been for the most part an unaddressed
challenge.

Prior works have attempted to characterize eating habits
through various means. Though many methods have been pro-
posed, two of the more promising techniques include inertial-
systems using piezoelectric sensors, as well as audio-based detec-
tion using throat microphones. In piezoelectric-based techniques,
piezoelectric sensors, which produce a voltage in response to me-
chanical stress, can be used to detect movement in the skin on the
lower-neck associated with swallowing. This approach differs from
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microphones based on piezoelectric technology: our system does
not detect sound waves, instead assessing motion in the skin that
results from swallows and chewing. Alternatively, audio-based
techniques typically place a small microphone near the jaw or
neck, and record eating noises such as chewing and swallowing.
These sounds can be disambiguated from other background noises
using classifiers and other signal-processing techniques. These ap-
proaches differ significantly from a perspective of comfort, practi-
cality, convenience, power usage, and detection accuracy.

The primary novelties of our work are the description of a sys-
tem inwhich a piezoelectric sensor is placed in the lower part of the
neck for detecting swallow motions, and a comparison of this
technique with audio-based monitoring using datasets derived
from the same experiments. This provides a much more objective
comparison of these two technologies than otherwise possible by
comparing results from separate papers using different datasets
and methodologies. Furthermore, we provide an evaluation of the
power overhead of these techniques as a function of sample rate,
computational overhead, and Bluetooth connection interval.

This paper is organized as follows. Section 2 presents related
work in dietary monitoring technologies. In Section 3, we describe
the hardware architecture of the two schemes, followed by algo-
rithms in Section 4. In Section 5, we describe the experimental
procedure. In Section 6, we describe experimental results. In Sec-
tion 7, we describe our methods for monitoring the power and
energy overhead of these techniques, which is followed by a pre-
sentation of results in Section 8. Finally, limitations and futurework
are described in Section 9, followed by concluding remarks in
Section 10.

2. Related works

Many works have employed microphones for detecting food
intake. For example, the work in Sazonov et al. (2008) uses acoustic
data acquired from a small microphone placed near the bottom of
the throat. Their system is coupled with a strain gauge placed near
the ear. Other works suggest the use of throat microphones as a
means of acquiring audio signals from throat and extracting swal-
lowing sounds, for evaluation of dysphagia symptoms in seniors
(Nagae and Suzuki, 2011; Tsujimura et al., 2010). Analyzing wave
shape in the time domain or feature extraction and machine
learning (Tsujimura et al., 2010) has resulted in an 86% swallow
detection accuracy in an in-lab controlled environment. Similarly,
the work featured in Nagae and Suzuki (2011) by Nagae et al. at-
tempts to distinguish between swallowing, coughing, and vocali-
zation using wavelet-transform analysis of audio data. However,
identifying the volume or characteristic of food intake is not the
focus of their work.

In Rahman et al. (2014), Rahman et al. present BodyBeat: a
robust system for detecting human sounds. A similar work is pre-
sented by Yatani et al. in Yatani and Truong (2012). Our work differs
from theirs for a number of reasons. First, we do not propose a
custom hardware solution, instead employing a simple off-the-
shelf throat microphone that connects directly to a mobile phone.
Secondly, we emphasize classification between different foods,
comparing the properties of celery, chocolate, nuts, water, chips,
and sandwiches. Furthermore, we perform real-time experiments
to measure the power overhead of frequency domain audio anal-
ysis, and Bluetooth 4.0 LE transmission of audio signals. Lastly, we
directly compare this approach to the inertial-sensing approach on
the basis of classification accuracy, and computational overhead.

In the work by Amft et al. in Amft et al. (2009), authors analyze
bite weight and classify food acoustically from an earpad-mounted
sensor. However, sound-based chewing recognition accuracy was
low, with a precision of 60%e70%. In Amft (2010), the authors

present a similar earpad-based sensor design to monitor chewing
sounds. Food grouping analysis revealed three significant clusters
of food: wet and loud, dry and loud, soft and quiet. An overall
recognition accuracy of over 86.6% was achieved. Some studies
have reached accuracy rates of 91.7% in an in-lab controlled envi-
ronment using neural networks with false positives of 9.5%
(Aboofazeli and Moussavi, 2004). A more recent study using sup-
port vector machines have been able to reach swallow detection
accuracies of up to 84.7% in an in-lab setting (Sazonov et al., 2010).
These devices are mounted very high in the upper trachea, near the
laryngopharynx. In Passler and Fischer (2011), Pler, et al. proposed a
system geared towards patients living in ambient assisted living
conditions and used miniature electret microphones which were
integrated into a hearing aid case, and placed in the ear canal. Our
prior work described in Kalantarian et al. (2014a) also provided a
foundation for spectrogram-based analysis of audio signals. A
similar approach for analyzing bioacoustic signals using spectro-
grams was also presented by Pourhomayoun et al. in
Pourhomayoun et al.

A “smart tablecloth” was presented in 2015 by Bo Zhou et al. in
Zhou et al. (2015). The system detects eating behavior on solid
surfaces (such as tables), based on changes in the pressure distri-
bution of these tables during the eating process. The tablecloth was
a matrix of pressure sensors based on a carbon polymer sheet,
which changes its electrical resistance in response to electrical
force. At the corners of the tablecloth, force-sensitive resistors
(FSRs) are installed with the primary purpose of determining
weight, rather than spatial density. Features extracted from the
FSRs, as well as the pressure-sensitive tablecloth, are analyzed us-
ing classifiers such as decision trees to distinguish between various
eating-related actions such as stirring, scooping, and cutting. Based
on the ratio of different actions performed, the authors were able to
distinguish between four different meal types with high accuracy.
Furthermore, changes in the average pressure values from the data
streamwere associated with a decrease in the remaining amount of
food on the table, which was used to estimate food weight with an
error of approximately 16.62%.

The E-Button was presented in 2014 by Professor Mingui Sun at
the University of Pittsburgh (Sun et al., 2014). In this work, Sun et al.
propose a chest-mounted button with an embedded camera that
among other applications, can be applied to the domain of dietary
monitoring. The button is attached to a shirt using a pin or pair of
disk magnets, and contains an ARM Cortex processor, two wide-
angle cameras, a UV sensor for distinguishing between indoor
and outdoor environments, inertial sensors, proximity sensors, a
barometer, and a GPS. The acquired data is transmitted to a
smartphone using Bluetooth or WiFi. The E-Button operates by
taking photos at a preset rate, thereby recording the entire eating
process. Using image processing techniques, the utensils (such as a
plate or bowl) are detected. Subsequently, the food items are
identified based on color, texture, and other heuristics. Using this
information and additional DSP techniques, volume figures can be
calculated for each food, which is converted to a Calorie count using
a public domain database that equates volume and food type to
Calories. Evaluation of 100 foods was conducted, and the error was
approximately 30% for 85% of the foods, which were regularly
shaped. However, irregularly shaped food was not detected with
high accuracy.

Several prior works have attempted to detect swallow disorders
using piezoelectric sensors. The work by Toyosato et al. in Toyosato
et al. (2007) used a Piezoelectric Pulse Transducer to detect food
bolus passage through the esophagus. In Ertekin et al. (1996),
Ertekin et al. used piezoelectric sensors to evaluate dysphagia
symptoms in a study with thirty normal subjects and 66 dysphagia
patients. The authors concluded that piezoelectric sensors can be
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