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ABSTRACT

Mechanistic models of ruminant digestion and metab-
olism have advanced our understanding of the processes 
underlying ruminant animal physiology. Deterministic 
modeling practices ignore the inherent variation within 
and among individual animals and thus have no way to 
assess how sources of error influence model outputs. We 
introduce Bayesian calibration of mathematical models 
to address the need for robust mechanistic modeling 
tools that can accommodate error analysis by remaining 
within the bounds of data-based parameter estimation. 
For the purpose of prediction, the Bayesian approach 
generates a posterior predictive distribution that repre-
sents the current estimate of the value of the response 
variable, taking into account both the uncertainty 
about the parameters and model residual variability. 
Predictions are expressed as probability distributions, 
thereby conveying significantly more information than 
point estimates in regard to uncertainty. Our study il-
lustrates some of the technical advantages of Bayesian 
calibration and discusses the future perspectives in the 
context of animal nutrition modeling.
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Technical Note

Mathematical models of ruminant nutrition are used 
to formulate diets and integrate knowledge of ruminant 
digestion and metabolism. Models can be generally clas-
sified as empirical or mechanistic, each with different 
strengths and weaknesses. Empirical models are fitted 
to “training” data sets, and their application is con-
strained by the information in the development data. 
Mechanistic models of ruminant nutrition are causal 
in nature and can be theoretically applied to draw 
predictions outside their calibration domain. However, 
they are deterministic by design and their applications 

usually lack parameter variance or prediction error 
estimates (Baldwin, 1995; Reed et al., 2015). In cases 
where parameter or prediction errors are estimated 
through bootstrapping or other fitting techniques, they 
are usually estimated for predetermined components of 
the model and do not effectively capture the covariance 
among all model parameters. Many national nutri-
ent requirement models, such as the NRC (2001), are 
factorial combinations of stochastic, empirical models 
that incorporate error assessment but are limited by 
their static, factorial nature. The factorial approach of 
sequential combinations of empirically fit models pos-
tulates independence among the subsystems. However, 
in the ruminant animal, the processes of digestion and 
metabolism are tightly interlinked. In contrast, fitting 
a whole-animal mechanistic model relaxes the assump-
tion of independence as the parameters determining 
the behavior of each subsystem are specified simultane-
ously. Mechanistic models of ruminant nutrition such 
as those of Baldwin et al. (1987), Dijkstra et al. (1992), 
and Kebreab et al. (2002) depict our most accurate 
mathematical representation of the causal relationships 
operating at the subsystem level to represent the ani-
mal physiology dynamically given our current state of 
knowledge. However, the fitting methods typically used 
do not explicitly accommodate the error associated 
with the data nor do they allow for estimation of the 
appropriateness of model structure.

Models are not a true representation of complex 
biological systems but rather a depiction of our best 
understanding of the dominant processes within that 
system (Oreskes et al., 1994). Recognizing that there 
are forces acting on the system that are unaccounted 
for by the model and others that may be described 
incorrectly, one must explicitly recognize that model 
predictions will often be inaccurate. For example, the 
effect of particle size on rate of passage is a force that is 
not accounted for in this model, which will cause some 
degree of prediction error. Thus, it is the obligation 
of the modeler to communicate to the users the level 
of confidence with which the model can be expected 
to align with or deviate from reality. As knowledge of 
ruminant digestion and metabolism increases, the foun-
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dation of mechanistic models is strengthened and so 
their ability to respond to complex questions that face 
ruminant production systems today is also enhanced. 
However, if mechanistic models are to be used as deci-
sion-making tools, model errors need to be estimated 
well to highlight the parts of their structure that are 
not well-defined and to provide an assessment of the 
risks associated with the different production system 
practices.

Bayesian mechanistic models are popular in fields 
such as ecology and biogeochemistry (Arhonditsis 
et al., 2008; Ramin and Arhonditsis, 2013) and have 
many advantages that will benefit the field of ruminant 
nutrition. Applying Bayesian calibration techniques to 
dynamic ruminant nutrition models combines the ad-
vantageous features of both mechanistic and statistical 
approaches. Bayesian calibration frameworks can char-
acterize multi-level structures (Zhang and Arhonditsis, 
2009): a particularly useful attribute when modeling 
animal physiology, where individual metabolic pro-
cesses connect to describe the productivity patterns 
of individual animals. Another advantage of Bayesian 
inference techniques is that they allow capitalizing on 
existing knowledge of the relative plausibility of model 
parameter values through the formulation of prior dis-
tributions (Arhonditsis et al., 2008). The amount of 
knowledge or confidence about the values of a given 
parameter determines the degree of information pro-
vided by the corresponding prior distribution. Designa-
tion of prior distributions constrains the solution space, 
which in mechanistic models can be prohibitively large 
and create barriers to model training exercises. Even 
a small amount of information about a parameter, for 
example, designation of a distribution that is limited to 
the positive real line, can prevent the search algorithm 
from going out of bounds and facilitate convergence to 
the best solution. Model practitioners have disparate 
views regarding the use of prior information alongside 
calibration data. One school of thought encourages the 
use of noninformative priors, which allows the data to, 
almost exclusively, determine the posterior parameter 
estimates. Indeed, in the asymptotic case where the 
number of observations approaches infinity, Bayesian 
and frequentist estimation are practically identical if 
noninformative conjugate prior distributions are used. 
On the other hand, when sample sizes are small (rela-
tive to the number of parameters being estimated), it 
may not be prudent to solely rely on the available data 
in guiding the search for defensible model solutions. In 
this case, the inclusion of prior information on model 
parameters can be beneficial in that it characterizes 
the parameter space with respect to its plausibility and 
therefore effectively reduces the discrepancy between 
model inputs and outputs (Gelman et al., 2014). Fur-

ther, when parameter distributions are updated through 
model calibration, posterior distributions can then be 
used as prior distributions for the next calibration when 
new data become available. Viewing model calibration 
as an inverse problem, the “prior–likelihood–posterior” 
update cycles more effectively lead to model solutions 
that can realistically reflect the internal structure of the 
modeled system and avoid getting “good results for the 
wrong reasons” (Zhang and Arhonditsis, 2008).

The Bayesian approach to mechanistic modeling can 
be adapted to model daily or sub-daily (i.e., hourly or 
any other period less than a day) time steps in steady-
state or non-steady-state dynamics depending on the 
quality and availability of data. The appropriateness of 
assuming steady state in simulations of dynamic sys-
tems has been questioned (Flynn, 2006). A steady-state 
model will, at best, achieve an average approximation 
of the ruminant animal if it is fed several equally pro-
portioned meals a day, which is contrary to common 
feeding practices of less than 3 meals per day. More 
realistic feeding patterns can be accommodated in a 
Bayesian setting through use of dynamic forcing func-
tions, making investigations into the effects of sub-daily 
fluctuations in rumen fermentation or rate of passage, 
for example, particularly accessible.

To illustrate this modeling technique, a 3-pool model 
of rumen N digestion and passage to the duodenum 
was developed. A description of model equations is 
given in Table 1. Inputs to the system through N intake 
are represented by IX, where X is either the soluble 
or potentially degradable N fraction in the feed; flows 
are represented by FA−B where the flow is movement 
of N from pool A to pool B. State variables or pools 
are represented by Q and degradation of N from the 
potentially degradable N pool (QDegN) to the soluble 
N pool (QSolN) is represented as a mass-action function 
mediated by the degradation constant kd. Similarly, 
flow of N from the rumen to the duodenum is also 
represented as a mass-action function through the rate 
of passage constant, kp. The rate of passage (kp) was 
further modeled as a function of intake where intake is 
a function of time:
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where β is the coefficient representing the linear rela-
tionship between intake and rate of passage. The intake 
function, IDM(t), was modeled as an interpolation of 
feed intake over time such that the area under the 
curve was equal to total DMI. Uptake of N from QSolN 
to the microbial N pool (QMicN) is modeled through 
a Michaelis-Menten function, similar to that described 
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