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 ABSTRACT 

 Computing the inverse of the genomic relationship 
matrix using recursion was investigated. A traditional 
algorithm to invert the numerator relationship matrix 
is based on the observation that the conditional ex-
pectation for an additive effect of 1 animal given the 
effects of all other animals depends on the effects of its 
sire and dam only, each with a coefficient of 0.5. With 
genomic relationships, such an expectation depends 
on all other genotyped animals, and the coefficients 
do not have any set value. For each animal, the coef-
ficients plus the conditional variance can be called a 
genomic recursion. If such recursions are known, the 
mixed model equations can be solved without explicitly 
creating the inverse of the genomic relationship matrix. 
Several algorithms were developed to create genomic 
recursions. In an algorithm with sequential updates, 
genomic recursions are created animal by animal. That 
algorithm can also be used to update a known inverse 
of a genomic relationship matrix for additional geno-
types. In an algorithm with forward updates, a newly 
computed recursion is immediately applied to update 
recursions for remaining animals. The computing costs 
for both algorithms depend on the sparsity pattern of 
the genomic recursions, but are lower or equal than for 
regular inversion. An algorithm for proven and young 
animals assumes that the genomic recursions for young 
animals contain coefficients only for proven animals. 
Such an algorithm generates exact genomic EBV in 
genomic BLUP and is an approximation in single-step 
genomic BLUP. That algorithm has a cubic cost for 
the number of proven animals and a linear cost for the 
number of young animals. The genomic recursions can 
provide new insight into genomic evaluation and pos-
sibly reduce costs of genetic predictions with extremely 
large numbers of genotypes. 
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 INTRODUCTION 

 When only a fraction of animals are genotyped, a 
genomic relationship matrix G can be combined with 
a numerator relationship matrix A into a genomic-
pedigree relationship matrix H (Legarra et al., 2009). 
Such a matrix is complicated, but has a simple inverse 
(Aguilar et al., 2010; Christensen and Lund, 2010). 
When the inverse of H is used with BLUP, the method 
is called single-step genomic BLUP (ssGBLUP). 
Advantages of ssGBLUP include simplicity of use (yet 
another BLUP), relatively high accuracy (Chen et 
al., 2011; Christensen et al., 2012; Gray et al., 2012), 
known and explicit control of biases because of different 
base populations in A and G as opposed to unknown 
properties of multistep methods (Tsuruta et al., 2011; 
Vitezica et al., 2011), and possible accounting for selec-
tion bias for genotyped animals (Patry and Ducrocq, 
2011; VanRaden, 2012). Accuracy of ssGBLUP can be 
further improved by using a weighted G (Wang et al., 
2012), which mimics Bayesian regressions. 

 The most expensive operation with ssGBLUP, as 
proposed by Aguilar et al. (2010) and Christensen and 
Lund (2010), is creating and then inverting G. Both 
operations have an approximately cubic cost with the 
number of genotypes. With efficient computing algo-
rithms, both operations are feasible for up to 100,000 
genotypes (Aguilar et al., 2011; Masuda and Suzuki, 
2013). However, the US dairy industry has already 
collected over 400,000 Holstein genotypes; over 80% of 
genotypes are for animals without a BLUP evaluation, 
with a very slow increase in the number of genotypes 
for proven bulls (Council on Dairy Cattle Breeding, 
2013). 

 Several approaches that do not require the inverse 
of G (G−1) have been proposed for ssGBLUP. Misztal 
et al. (2009) presented unsymmetric equations where 
only H was required. However, creating H directly is 
complicated. Legarra and Ducrocq (2012) presented 
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different unsymmetric equations where inverses that 
were difficult to obtain were not required. Unsymmetric 
equations exhibited declining convergence with a larger 
number of genotypes (Aguilar et al., 2013), although 
they may be useful when a suitable preconditioner is 
found. Fernando et al. (2013) proposed a method where 
genotypes of nongenotyped animals were imputed and 
the final set of equations included SNP effects for all 
animals plus extra polygenic terms. However, the im-
putation is expensive; the volume of the imputed data 
are extremely large for big populations (up to dozens 
of millions of individuals for dairy cattle), and existing 
software is not applicable.

The cost of creating A by a tabular method (Emik 
and Terrill, 1949) is quadratic, and the cost to invert it 
directly is cubic. However, Henderson (1976) developed 
an algorithm based on recursion to obtain the inverse of 
A (A−1) directly at linear cost. Subsequently, A−1 can 
be computed for millions of animals in seconds. Faux 
et al. (2012) used Henderson’s ideas and conditioned 
animals on a small number of relatives. However, the 
cost of their algorithm was higher than that by regular 
inversion. The purpose of our study was to determine 
whether recursion is useful in obtaining G−1 at a rea-
sonable cost for a large number of genotypes.

MATERIALS AND METHODS

The method of Henderson (1976) to create A−1 di-
rectly depends on the recursion

 u u us d ii ii = 0.5 +  + ,( ) ϕ  

ui = 0.5(usi + udi) + φi, 

where ui is the animal effect for animal i; si and di refer 
to the sire and dam of animal i, respectively; φi is Men-
delian sampling; and founders of the pedigree are as-
sumed to be unrelated. In matrix notation and with a 
genetic variance of σa

2 of 1 to simplify notation,

u = Pu + Φ, var(Φ) = M, 

and

A−1 = (I − P) M−1(I − P) = T M−1T,

where P relates animals to parents; T is a triangular 
matrix if animals are ordered from oldest to youngest; 
and M is a diagonal matrix. Subsequently, A−1 can be 
created as a sum of outer products

 A t t− = ∑1
1 1( ' / ),, : , :i n i n i

i
m  

where ti,1:n contains no more than 3 nonzero elements. 
Ignoring inbreeding, the value of mi is (4 − number of 
known parents)/4. Henderson’s rules are simple: when 
u A~ ( , ),N a0 2σ  animals are ordered from the oldest to 
the youngest, and all animals (including base animals) 
are included in the pedigree,
u u u u u u u u ui i i n i s di i1 2 -1 +1, ,…, , ,…, = , , or the conditional 
for an animal includes only its parents but not the rest 
of individuals in the pedigree. For instance, when only 
animals with records are included in A or older animals 
are conditioned on the younger animals, the conditional 
of ui may involve more than 2 animals.

With genomic relationships, u G~ ( , ).N a0 2σ  The joint 
distribution of u1,…,un can be written as

p(u1,…,un) = p(u1)p(u2|u1)p(u3|u2,u1)… 

p(un|u1,u2,…,un−1). 

This decomposition is general and does not involve any 
particular ordering of individuals. Each of the condi-
tional distributions can be written as
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with gi,1:i−1 part of the ith row of G, and with the fol-
lowing recursion equation:
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and

pi,1:i−1 = gi,1:i−1(G1:i−1:i−1)
−1, Mi,i = mi = var(εi) =  

 gi,i − pi,1:i−1g i,1:i−1.  [1]

Mimicking the developments of Henderson (1976) and 
Quaas (1988),

G−1 = (I − P) M−1(I − P) = T M−1T, 

where T is a triangular matrix as a result of the recur-
sions of ui on individuals u1…ui−1. Then G−1 can be 
created as a sum of outer products as
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