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  aBStraCt 

  The objective of this study was to investigate in de-
tail the biasing effects of imputation errors on genomic 
predictions. Direct genomic values (DGV) of 3,494 
Brown Swiss selection candidates for 37 production 
and conformation traits were predicted using either 
their observed 50K genotypes or their 50K genotypes 
imputed from a mimicked 6K chip. Changes in DGV 
caused by imputation errors were shown to be sys-
tematic. The DGV of top animals were, on average, 
underestimated and that of bottom animals were, on 
average, overestimated when imputed genotypes were 
used instead of observed genotypes. This pattern might 
be explained by the fact that imputation algorithms 
will usually suggest the most frequent haplotype from 
the sample whenever a haplotype cannot be determined 
unambiguously. That was empirically shown to cause 
an advantage for the bottom animals and a disadvan-
tage for the top animals. 
  Key words:    allele frequency ,  bias ,  haplotype ,  single 
nucleotide polymorphism (SNP) effect 

  IntrODuCtIOn 

  In recent years, the number of genotyping platforms 
with different SNP densities has increased consider-
ably. Additionally, custom chips containing any desired 
number of SNP defined by the customer are now com-
mercially available. These increasing possibilities with 
respect to marker density make the role of imputation 
from one panel to another important. Many studies 
have been conducted on the effect of imputation on 
genomic predictions and their reliabilities, but results 
reported so far are usually given in terms of overall cor-
relations between genomic predictions from observed 
and imputed genotypes (e.g., Dassonneville et al., 2011; 
Segelke et al., 2012). A closer inspection of the conse-
quences of imputation errors on genomic predictions 
might be of interest. Therefore, the objective of this 

study was to analyze to what extent imputation er-
rors affect genomic breeding values and to investigate 
whether the differences in predictions caused by impu-
tation errors follow any systematic pattern. 

  materIaLS anD metHODS 

 Brown Swiss data from the December 2013 run of the 
official German-Austrian joint genomic evaluation were 
used. The pool of genotyped animals included 3,494 
selection candidates; that is, animals without insemina-
tion bull status and that do not contribute phenotypes 
to the system. Routine evaluations are based on the 
Illumina Bovine SNP50 BeadChip (Illumina Inc., San 
Diego, CA). After the usual edits (i.e., exclusion of 
markers with call-rate <0.95, minor allele frequency 
<0.02, significant deviation from Hardy-Weinberg 
equilibrium or redundancy with another locus), 37,653 
markers remained for further analyses. Detailed descrip-
tions of the major steps, the criteria used for marker 
editing, and the statistical method routinely used in 
the German-Austrian genomic evaluation can be found 
in Edel et al. (2011) and Ertl et al. (2014). In brief, the 
statistical model is

 y = μ + Dg + e,

 where y is an (n × 1) vector of phenotypes of the 
calibration animals; that is, AI bulls contributing both 
genotypic and phenotypic information to the system; 
μ is an overall mean; g is a (p × 1) vector of direct 
genomic values (DGV), with p = n + m, and m being 
the number of selection candidates; D is an (n × p) 
design matrix relating phenotypes to DGV; and e is an 
(n × 1) vector of residuals. The variance of y (V) is 
assumed to be

  V DGD R= ′ +σa
2 , 

 where G is a (p × p) genomic relationship matrix, σa
2 is 

the additive genetic variance, and R is a diagonal ma-
trix of order n, elements of which are functions of the 
residual variance and the reliability of the correspond-
ing phenotype (for details, see Edel et al., 2009). Matrix 
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G was computed following the first method described 
by VanRaden (2008) as follows:
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where l is the number of markers; qi is the base allele 
frequency at locus i; and Z is a (p × l) matrix, calcu-
lated as Z = M – Q, where M is the matrix of geno-
types (coded as −1, 0, or 1) and Q is a matrix of which 
the ith column is 2(qi – 0.5). Predicted DGV ĝ( ) are 
then calculated as

 ˆ ˆ ( ˆ).g GD V y= ′ −−σ µa
2 1  

Reliabilities of DGV are estimated from

 diag GD V DG′{ }−1 . 

Phenotypes used in the analyses were deregressed 
multiple across-country evaluation (MACE) proofs. 
Estimates of base allele frequencies were obtained 
using the method proposed by Gengler et al. (2007). 
The DGV of the selection candidates for 37 production 
and conformation traits were predicted using either 
their observed 50K genotypes or their 50K genotypes 
imputed from a 6K chip. Genotypes of the 6K chip 
were obtained by masking the SNP from 50K that are 
not contained in the Illumina BovineLD BeadChip. 
Animals in the calibration set were all genotyped with 
the 50K chip. Masking of genotypes was only applied 
to selection candidates to depict a situation in which 
candidates are genotyped at low density. The number 
of calibration bulls varied depending on the trait and 
ranged from 1,001 to 5,390, with an average of 3,438. 
Imputation was done with 2 imputation software pack-
ages: findhap v2 (VanRaden et al., 2011) and FImpute 
(Sargolzaei et al., 2014). The number of animals with 
50K genotypes in the reference population used for 
imputation was 6,243. From the 37,653 markers that 
passed the routine filtering process, 908 were not an-
notated. Therefore, these markers are meaningless for 
haplotype reconstruction and were not included in the 
imputation step done with findhap or FImpute. Geno-
types at these loci were imputed with the sample mean 
gene contents (i.e., mean genotypes of the 6,243 refer-
ence animals with 50K genotypes) afterward.

reSuLtS anD DISCuSSIOn

Average allele error rates, measured as the mean 
proportion of wrongly imputed alleles, were 1.54% 

with findhap and 0.85% with FImpute. Mean propor-
tions of correctly imputed genotypes were 96.97% with 
findhap and 98.33% with FImpute. Mean correlation 
coefficients between observed and imputed genotypes 
were 0.976 with findhap and 0.987 with FImpute. 
These numbers are similar to measures of imputation 
success from 6K to 50K reported in other studies (e.g., 
Boichard et al., 2012; Segelke et al., 2012; Chen et al., 
2014). Across traits, average overall correlations be-
tween DGV predicted with observed or imputed geno-
types were 0.987 (from 0.982 to 0.993) with findhap 
and 0.992 (from 0.988 to 0.995) with FImpute. These 
numbers are similar to correlations reported in other 
studies (e.g., Mulder et al., 2012; Segelke et al., 2012). 
Despite these overall high correlations, some noticeable 
reranking among the top selection candidates occurred 
when prediction was based on imputed genotypes. Av-
eraged across all traits, rank correlations within the top 
50 candidates were 0.843 with findhap and 0.876 with 
FImpute. Within the top 50 candidates, we found a 
tendency to underestimation when DGV were predicted 
from imputed genotypes. Analogously, a tendency to 
overestimation within the bottom 50 candidates was 
observed. As an illustration, mean differences between 
DGV from observed genotypes and from genotypes 
imputed with findhap for the bottom 50, intermediate, 
and top 50 candidates (ranked according to the DVG 
from observed genotypes) are given in Figure 1 for 6 
of the studied traits. These trends indicate that the 
changes in DGV caused by imputation errors follow 
some systematic pattern. As a possible explanation to 
this phenomenon, we formulated a hypothesis based on 
the following 3 assumptions: (1) in a simplified way, 
one could postulate that the top animals should have, 
on average, the best haplotypes, and that the bottom 
animals should have, on average, the worst haplotypes, 
with respect to their effects on the trait being con-
sidered; (2) whenever an imputation algorithm cannot 
determine a haplotype unambiguously, it will suggest 
the most frequent haplotype in the sample as replace-
ment for the missing one; and (3) if the most frequent 
haplotype has a neutral effect on the trait (i.e., if its 
effect is the closest to the population mean compared 
with the effects of the other possible haplotypes), then 
this replacement will represent an advantage for the 
bottom animals and a disadvantage for the top animals.

For most of the traits, we observed a general decrease 
in DGV when imputed genotypes were used. This trend 
can be seen in Figure 1 as the slight decrease in DGV for 
the intermediate animals. This overall decrease can be 
attributed to the genetic trend that separates the group 
of selection candidates from the calibration group (and 
the reference pool of genotyped animals used for impu-
tation). Compared with the reference group, selection 
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