Accepted Manuscript

On sequences of Toeplitz matrices over finite fields

Geoffrey Price, Myles Wortham

PII:	S0024-3795(18)30446-4
DOI:	https://doi.org/10.1016/j.laa.2018.09.013
Reference:	LAA 14728

To appear in: Linear Algebra and its Applications

Received date: 9 April 2018
Accepted date: 10 September 2018

Please cite this article in press as: G. Price, M. Wortham, On sequences of Toeplitz matrices over finite fields, Linear Algebra Appl. (2018), https://doi.org/10.1016/j.laa.2018.09.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

In this paper we consider sequences $\left\{\mathcal{A}_{n}\right\}$ of Toeplitz matrices with entries in an arbitrary finite field F. The sequence $\left\{\mathcal{A}_{n}\right\}$ is uniquely determined by a pair of sequences a_{0}, a_{1}, \ldots and b_{1}, b_{2}, \ldots over F, so that \mathcal{A}_{n} is the $(n+1) \times(n+1)$ matrix

$$
\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \tag{1.1}\\
b_{1} & a_{0} & a_{1} & \ldots & a_{n-2} & a_{n-1} \\
b_{2} & b_{1} & a_{0} & \ldots & a_{n-3} & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
b_{n} & b_{n-1} & b_{n-2} & \ldots & b_{1} & a_{0}
\end{array}\right]
$$

In particular, \mathcal{A}_{n} lies in the top left corner (as well as the bottom right corner) of \mathcal{A}_{n+1}.

For each sequence $\left\{\mathcal{A}_{n}\right\}$ let $\nu=\left\{\nu_{n}\right\}$ be the corresponding sequence of nullities, i.e. ν_{n} is the nullity of \mathcal{A}_{n}. As in [1], where K. Culler and one of the authors considered nullity sequences of skew centro-symmetric matrices \mathcal{A}_{n} (see also [10],[11]), here we ascertain the patterns of the nullity sequences which can occur for Toeplitz matrices. We present an elementary proof which shows that $\left\{\nu_{n}\right\}$ is a concatenation of strings of the form $0,0, \ldots, 0$ or $1,2, \ldots, d-1, d, d, \ldots, d, d-1, d-2, \ldots, 1,0$, where d can repeat any finite number of times; or the nullity sequence may consist of a concatenation of finitely many strings of this type, followed by $1,2, \ldots$, see Theorem 1. These patterns were observed in [4] for sequences of Toeplitz matrices over \mathbb{C}. We analyze the structure of the (right) kernels of matrices which satisfy these patterns and use this to determine the number of matrices $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}$ which satisfy a specific nullity pattern, ν_{0}, \ldots, ν_{n}. We note that the structure of kernels of Toeplitz matrices over \mathbb{C} is carried out in [4], and a similar analysis is carried

[^0]Abstract. For each non-negative integer n let \mathcal{A}_{n} be an $n+1$ by $n+1$ Toeplitz matrix over a finite field, F, and suppose for each n that \mathcal{A}_{n} is embedded in the upper left corner of \mathcal{A}_{n+1}. We study the structure of the sequence $\nu=\left\{\nu_{n}: n \in \mathbb{Z}^{+}\right\}$, where $\nu_{n}=\operatorname{null}\left(\mathcal{A}_{n}\right)$ is the nullity of \mathcal{A}_{n}. For each $n \in \mathbb{Z}^{+}$and each nullity pattern $\nu_{0}, \nu_{1}, \ldots, \nu_{n}$, we count the number of strings of Toeplitz matrices $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ with this pattern. As an application we present an elementary proof of a result of D. E. Daykin on the number of $n \times n$ Toeplitz matrices over $G F(2)$ of any specified rank. 2000 MSC Classification 15A33, 15A57
Keywords: Toeplitz matrix, nullity sequence, rank, finite fields

1. Introduction

ON SEQUENCES OF TOEPLITZ MATRICES OVER FINITE FIELDS

GEOFFREY PRICE* AND MYLES WORTHAM

https://daneshyari.com/en/article/10997862

Download Persian Version:
https://daneshyari.com/article/10997862

Daneshyari.com

[^0]: Date: 13 August 2018.

 * supported in part by the United States Naval Research Laboratory, Washington, DC.

