Linear Algebra and its Applications 561 (2019) 81-97

On rank range of interval matrices

Elena Rubei

Dipartimento di Matematica e Informatica "U. Dini", viale Morgagni 67/A, 50134 Firenze, Italy

ARTICLE INFO

Article history: Received 3 January 2018 Accepted 19 September 2018 Available online 21 September 2018 Submitted by R. Brualdi

MSC: 15A99 15A03 65G40

Keywords: Interval matrices Rank

ABSTRACT

An interval matrix is a matrix whose entries are intervals in \mathbb{R} . Let $p, q \in \mathbb{N} \setminus \{0\}$ and let $\boldsymbol{\alpha} = ([\underline{\alpha}_{i,j}, \overline{\alpha}_{i,j}])_{i,j}$ be a $p \times q$ interval matrix; given a $p \times q$ matrix A with entries in \mathbb{R} , we say that $A \in \boldsymbol{\alpha}$ if $a_{i,j} \in [\underline{\alpha}_{i,j}, \overline{\alpha}_{i,j}]$ for any i, j. We establish a criterion to say if an interval matrix contains a matrix of rank 1. Moreover we determine the maximum rank of the matrices contained in a given interval matrix. Finally, for any interval matrix $\boldsymbol{\alpha}$ with no more than 3 columns, we describe a way to find the range of the ranks of the matrices contained in $\boldsymbol{\alpha}$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $p, q \in \mathbb{N} \setminus \{0\}$; a $p \times q$ interval matrix is a $p \times q$ matrix whose entries are intervals in \mathbb{R} ; let $\boldsymbol{\alpha} = ([\underline{\alpha}_{i,j}, \overline{\alpha}_{i,j}])_{i,j}$ be a $p \times q$ interval matrix, where $\underline{\alpha}_{i,j}, \overline{\alpha}_{i,j}$ are real numbers with $\underline{\alpha}_{i,j} \leq \overline{\alpha}_{i,j}$ for any i and j; given a $p \times q$ matrix A with entries in \mathbb{R} , we say that $A \in \boldsymbol{\alpha}$ if $a_{i,j} \in [\underline{\alpha}_{i,j}, \overline{\alpha}_{i,j}]$ for any i, j. In this paper we investigate about the range of the ranks of the matrices contained in $\boldsymbol{\alpha}$.

There are several papers studying when an interval $p \times q$ matrix $\boldsymbol{\alpha}$ has full rank, that is when all the matrices contained in $\boldsymbol{\alpha}$ have rank equal to min $\{p,q\}$. For any $p \times q$ interval

LINEAR

lications

E-mail address: elena.rubei@unifi.it.

matrix $\boldsymbol{\alpha} = ([\underline{\alpha}_{i,j}, \overline{\alpha}_{i,j}])_{i,j}$ with $\underline{\alpha}_{i,j} \leq \overline{\alpha}_{i,j}$, let mid($\boldsymbol{\alpha}$), rad($\boldsymbol{\alpha}$) and $|\boldsymbol{\alpha}|$ be respectively the midpoint, the radius and the modulus of $\boldsymbol{\alpha}$, that is the $p \times q$ matrices such that

$$\operatorname{mid}(\boldsymbol{\alpha})_{i,j} = \frac{\underline{\alpha}_{i,j} + \overline{\alpha}_{i,j}}{2}, \qquad \operatorname{rad}(\boldsymbol{\alpha})_{i,j} = \frac{\overline{\alpha}_{i,j} - \underline{\alpha}_{i,j}}{2}, \qquad |\boldsymbol{\alpha}|_{i,j} = \max\{|\underline{\alpha}_{i,j}|, |\overline{\alpha}_{i,j}|\}$$

for any i, j. The following theorem characterizes full-rank square interval matrices:

Theorem 1 (Rohn, [7]). Let $\boldsymbol{\alpha} = ([\underline{\alpha}_{i,j}, \overline{\alpha}_{i,j}])_{i,j}$ be a $p \times p$ interval matrix, where $\underline{\alpha}_{i,j} \leq \overline{\alpha}_{i,j}$ for any i, j. Let $Y_p = \{-1, 1\}^p$ and, for any $x \in Y_p$, denote by T_x the diagonal matrix whose diagonal is x.

Then $\boldsymbol{\alpha}$ is a full-rank interval matrix if and only if, for each $x, y \in Y_p$,

$$\det\left(\operatorname{mid}(\boldsymbol{\alpha})\right)\,\det\left(\operatorname{mid}(\boldsymbol{\alpha})-T_x\operatorname{rad}(\boldsymbol{\alpha})\,T_y\right)>0.$$

See [7] and [8] for other characterizations. The following theorem characterizes fullrank $p \times q$ interval matrices, see [9], [10], [12]:

Theorem 2 (Rohn). A $p \times q$ interval matrix $\boldsymbol{\alpha}$ with $p \ge q$ has full rank if and only if the system of inequalities

 $|\operatorname{mid}(\boldsymbol{\alpha}) x| \leq \operatorname{rad}(\boldsymbol{\alpha}) |x|, \qquad x \in \mathbb{R}^q$

has only the trivial solution x = 0.

A problem which can be connected with the quoted ones is the one of the partial matrices: let K be a field; a partial matrix over K is a matrix where only some of the entries are given and they are elements of K; a completion of a partial matrix is a specification of the unspecified entries. We say that a submatrix of a partial matrix is specified if all its entries are given. The problem of determining whether, given a partial matrix, a completion with some prescribed property exists and related problems have been widely studied: we quote, for instance, the papers [1], [2], [14]. In particular there is a wide literature about the problem of determining the maximal and the minimal rank of the completions of a partial matrix.

In [2], Cohen, Johnson, Rodman and Woerdeman determined the maximal rank of the completions of a partial matrix in terms of the ranks and the sizes of its maximal specified submatrices; see also [1] for the proof. The problem of determining the minimal rank of the completions of a partial matrix seems more difficult and it has been solved only in some particular cases, see for instance the paper [13] for the case of triangular matrices. We quote also the paper [3], where the authors establish a criterion to say if a partial matrix has a completion of rank 1.

Also for interval matrices, the problem of determining the miminal rank of the matrices contained in a given interval matrix seems much more difficult than the problem of Download English Version:

https://daneshyari.com/en/article/10997863

Download Persian Version:

https://daneshyari.com/article/10997863

Daneshyari.com