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The rational Krylov method is a powerful tool for computing 
a selected subset of eigenvalues in large-scale eigenvalue 
problems. In this paper we study a method to implicitly 
apply a filter in a rational Krylov iteration by directly 
acting on a QR factorized representation of the Hessenberg 
pair from the rational Krylov method. This filter is used 
to restart the iteration, which is generally required to limit 
the orthogonalization and storage costs. The contribution in 
this paper is threefold. We reformulate existing procedures 
in terms of operations on core transformations. This has the 
advantage of improved convergence monitoring. Secondly, we 
demonstrate that the extended QZ method is a special case 
of this more general method. Finally, numerical experiments 
show the validity and the increased accuracy of the new 
approach compared with existing methods.
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1. Introduction

The Arnoldi algorithm, first introduced by Arnoldi (1951) [1] and studied extensively 
by Saad [2–5] is the classical Krylov method. It is a projection method frequently used 
for solving systems of linear equations, eigenvalue problems, matrix equations, and so 
forth. The Arnoldi algorithm generates a subspace on which the problem is projected. 
The resulting smaller problem is then solved, and lifted back to its original dimen-
sions.

The Arnoldi method has a particular convergence behavior. If we focus on eigenvalue 
computations, it locates first well-separated extreme eigenvalues [5–7]. Computing, e.g., 
rightmost eigenvalues, eigenvalues near the origin or eigenvalues in a certain region with 
prescribed accuracy may be infeasible with a small number of Krylov vectors. One way 
to reduce the number of vectors is by using methods that converge faster towards a 
particular region of interest. Shift-and-invert Arnoldi [8–10] uses the matrix (A− σI)−1

to compute the eigenvalues near the ‘shift’ σ. In the rational Krylov method (RK), 
introduced by Ruhe [11–15], the shift or pole may change at every step in the iteration. 
The extended Krylov method (EK), first proposed by Druskin & Knizhnerman (1998) 
[16] for the approximation of matrix functions, is a special case of the RK method that 
only uses shifts at zero and infinity.

In every step of the Arnoldi algorithm, an explicit orthogonalization of the new vector 
against all previously computed basis vectors is performed. Consequently, the computa-
tional cost and storage requirements increase as the algorithm progresses. This problem 
can be solved by a restart of the Arnoldi method. Sorensen (1992) introduced the im-
plicitly restarted Arnoldi method (IRA) [17]. His algorithm applies implicitly shifted 
QR steps on the Arnoldi Hessenberg matrix. The IRA method was further analyzed by 
Morgan (1996) [18] and refined by Lehoucq & Sorensen (1996) [19]. Stewart (2001) [20]
introduced the Krylov–Schur algorithm where a proper subspace is extracted from the 
Krylov subspace via the Schur decomposition. De Samblanx, Meerbergen & Bultheel 
(1997) [21] proposed an implicit restart method for rational Krylov methods. Their 
method uses an explicit QZ step on the RK Hessenberg pencil. Recently, Berljafa & 
Güttel [22] proposed a method to change the poles in the RK method and noticed that 
this procedure can be used to restart the RK method [22, Section 4.3]. In their paper no 
comparison is made with the explicit method of De Samblanx et al. [21].

The contribution of this paper is threefold. First, we reformulate the method of Berl-
jafa & Güttel in terms of operations on a QR-factorized representation of the RK 
Hessenberg pencil. In this representation, the unitary matrix is stored as a sequence 
of core transformations. This extends the core chasing techniques, introduced by Vande-
bril [23] for the dense eigenvalue problem and further developed by Vandebril & Watkins 
[24,25], beyond condensed matrices. As such it is effectively a reformulation of the ratio-
nal QZ method [26] in terms of core transformations. This representation allows for an 
efficient storage scheme of the unitary matrices and admits an accurate deflation crite-
rion [27]. Furthermore, we use this representation to study the structure of the projection 
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