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THE SCHWARZ INEQUALITY VIA OPERATOR-VALUED INNER
PRODUCT AND THE GEOMETRIC OPERATOR MEAN

MASAYUKI FUJIMOTO1 AND YUKI SEO2

Abstract. In this paper, by virtue of the Cauchy-Schwarz operator inequality due to
J.I. Fujii, we show weighted mixed Schwarz operator inequalities in terms of the geo-
metric operator mean and its Lin’s type refinement. As applications, we show Wielandt
type operator inequalities that refine the weighted mixed Schwarz operator inequality
under some orthogonal conditions. Moreover, we show the variance-covariance operator
inequality via the geometric operator mean which differs from Bhatia-Davis’s one and
estimate the upper bounds. By our formulation, we show a Robertson type inequality
associated to a unital completely positive linear map on B(H).

1. Introduction

The Cauchy-Schwarz inequality is one of the most useful and fundamental inequalities
in functional analysis. Let B(H) be the space of all bounded linear operators on a Hilbert
space H, and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A ≥ 0) if 〈Ax, x〉 ≥ 0 for all x ∈ H. In particular, A > 0 means
that A is positive and invertible. For selfadjoint operators A and B, the order relation
A ≥ B means that A − B is positive. Regarding a sesquilinear map B(X, Y ) = Y ∗X
for X, Y ∈ B(H) as an operator-valued inner product, several operator versions for the
Schwarz inequality are discussed by many researchers. For example, if X, Y ∈ B(H), then
the Schwarz inequality for operators

(1.1) X∗Y (Y ∗Y )−1Y ∗X ≤ X∗X

holds. Indeed, since Y (Y ∗Y + εI)−1Y ∗ ≤ I for all ε > 0, there exists the strong operator
limit of Y (Y ∗Y + εI)−1Y ∗ as ε → 0 and we define

Y (Y ∗Y )−1Y ∗ = s-lim
ε→0

Y (Y ∗Y + εI)−1Y ∗

and write Y (Y ∗Y )−1Y ∗ ∈ B(H). This formulation for matrices is firstly given by Mar-
shall and Olkin in [15]. Let T be a positive operator and X, Y any two operators
in B(H). Replacing X and Y in (1.1) by T 1/2X and T 1/2Y , respectively, we obtain
X∗TY (Y ∗TY )−1Y ∗TX ∈ B(H) and

(1.2) X∗TY (Y ∗TY )−1Y ∗TX ≤ X∗TX.

In [3], Bhatia and Davis showed some new operator versions of the Schwarz inequality
for a positive linear map, which is a generalization of (1.2): A map Φ on B(H) is called
2-positive if (

A B
C D

)
≥ 0 implies

(
Φ(A) Φ(B)
Φ(C) Φ(D)

)
≥ 0.
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