
Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/infoproman

Hybrid compression of inverted lists for reordered document
collections☆

Diego Arroyuelo⁎,1,a, Mauricio Oyarzúnb, Senén Gonzálezc, Victor Sepulvedad

aDepartment of Informatics, Universidad Técnica Federico Santa María, Chile
bUniversidad Arturo Prat – Iquique, Chile
c Software Competence Center Hagenberg GmbH, Austria
dDepartment of Computer Science, University of Chile

A R T I C L E I N F O

Keywords:
Index compression for information retrieval
Reordered document collections

A B S T R A C T

Text search engines are a fundamental tool nowadays. Their efficiency relies on a popular and
simple data structure: inverted indexes. They store an inverted list per term of the vocabulary. The
inverted list of a given term stores, among other things, the document identifiers (docIDs) of the
documents that contain the term. Currently, inverted indexes can be stored efficiently using integer
compression schemes. Previous research also studied how an optimized document ordering can be
used to assign docIDs to the document database. This yields important improvements in index
compression and query processing time. In this paper we show that using a hybrid compression
approach on the inverted lists is more effective in this scenario, with two main contributions:

• First, we introduce a document reordering approach that aims at generating runs of con-
secutive docIDs in a properly-selected subset of inverted lists of the index.

• Second, we introduce hybrid compression approaches that combine gap and run-length en-
codings within inverted lists, in order to take advantage not only from small gaps, but also
from long runs of consecutive docIDs generated by our document reordering approach.

Our experimental results indicate a reduction of about 10%–30% in the space usage of the whole
index (just regarding docIDs), compared with the most efficient state-of-the-art results. Also,
decompression speed is up to 1.22 times faster if the runs of consecutive docIDs must be explicitly
decompressed, and up to 4.58 times faster if implicit decompression of these runs is allowed (e.g.,
representing the runs as intervals in the output). Finally, we also improve the query processing
time of AND queries (by up to 12%), WAND queries (by up to 23%), and full (non-ranked) OR
queries (by up to 86%), outperforming the best existing approaches.

1. Introduction

Inverted indexes are the de facto data structure to support the high-efficiency requirements of a text search engine (Baeza-Yates &
Ribeiro-Neto, 2011; Büttcher, Clarke, & Cormack, 2010; Manning, Raghavan, & Schütze, 2008; Witten, Moffat, & Bell, 1999; Zobel &

https://doi.org/10.1016/j.ipm.2018.05.007
Received 17 October 2017; Received in revised form 31 March 2018; Accepted 18 May 2018

☆ A preliminary version of this paper appeared in Proc. of the 36th International ACM SIGIR conference on research and development in Information Retrieval
(SIGIR’13).
⁎ Corresponding author.

1 Funded in part by FONDECYT Grant 11121556, Chile.

E-mail addresses: darroyue@inf.utfsm.cl (D. Arroyuelo), moyarzunsil@unap.cl (M. Oyarzún), sgonzale@dcc.uchile.cl (S. González),
vsepulve@dcc.uchile.cl (V. Sepulveda).

Information Processing and Management xxx (xxxx) xxx–xxx

0306-4573/ © 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: Arroyuelo, D., Information Processing and Management (2018), 
https://doi.org/10.1016/j.ipm.2018.05.007

http://www.sciencedirect.com/science/journal/03064573
https://www.elsevier.com/locate/infoproman
https://doi.org/10.1016/j.ipm.2018.05.007
https://doi.org/10.1016/j.ipm.2018.05.007
mailto:darroyue@inf.utfsm.cl
mailto:moyarzunsil@unap.cl
mailto:sgonzale@dcc.uchile.cl
mailto:vsepulve@dcc.uchile.cl
https://doi.org/10.1016/j.ipm.2018.05.007


Moffat, 2006). This includes, for instance, providing fast response to thousands of queries per second, while using as less server
memory as possible, among others (Dean, 2009). Given a document collection D with vocabulary = ⋯w wΣ { , , }V1 of V different
words (or terms), an inverted index forD stores a set of inverted lists ⋯I n I n[1. . ], , [1. . ]w w V1 V1 . Every list I n[1. . ]w ii stores a posting for
each of the ni documents that contain the term wi∈ Σ. Typically, a posting stores the document identifier (docID) of the document that
contains the term, the number of occurrences of the term in this document (the term frequency) and, in some cases, the positions of
the occurrences of the term within the document. The inverted index also stores a vocabulary table, which allows us to access the
respective inverted lists.

1.1. Inverted index compression

Inverted lists tend to be big, occupying important amounts of memory space. Also, transferring them from secondary storage can
take considerable time, degrading query processing time. Hence, lists are compressed, not only to reduce their space usage, but also to
reduce the transference time from disk—which can be up to 4–8 times slower if the disk-resident lists are not compressed
(Büttcher et al., 2010, see Table 6.9–page 213). To answer a query, the involved lists (or parts of them) must be decompressed.
Therefore, fast decompression is a key issue to support quick answers.

Inverted index compression has been studied in depth in the literature (Baeza-Yates & Ribeiro-Neto, 2011; Büttcher et al., 2010;
Manning et al., 2008; Witten et al., 1999). Usually, docIDs, frequencies, and positions are stored separately, using different inverted-
list layers. Thus, each layer can be compressed independently, using the best compression scheme for each case. Even though it is
important to compress each of these components, this paper is exclusively devoted to compress docIDs. Frequencies and term po-
sitions can be usually compressed using similar techniques. According to Yan, Ding, and Suel (2009) and Arroyuelo, González, Marin,
Oyarzún, and Suel (2012), the space used by docIDs correspond to about 65% of a docIDs+frequencies index. If we also consider
positional information, docIDs correspond to about 20% of the overall space (Arroyuelo et al., 2012). Besides the space savings, in
this paper we are also interested in reducing query processing time.

The most used approach to compress the docIDs of an inverted list Iwi is gap encoding: we first sort the lists by increasing docID,
and then represent the list using the differences between consecutive docIDs (minus 1, for technical reasons that will be made clear
through the paper). We call DGap these differences. Gap encoding usually generates a distribution with small numbers, in particular
for long lists. As we shall see through this paper, many of these DGaps are actually 0s, which correspond to terms that appear in
documents whose docIDs are consecutive (recall that we subtract 1 to the difference). We call runs the list regions containing
consecutive docIDs.

To support efficient searches, compressed inverted lists are logically divided into blocks of, say, 128 DGaps. This allows us
skipping blocks at search time, decompressing only the blocks that are relevant for a query. Among the existing compression schemes
for inverted lists, we have classical encodings like Elias δ and γ (Elias, 1975) and Golomb/Rice (Golomb, 1966), as well as the more
recent ones VByte (Williams & Zobel, 1999), Simple 9 (Anh & Moffat, 2005), and PForDelta (Zukowski, Héman, Nes, & Boncz, 2006)
encodings. All these methods benefit from sequences of small integers.

1.2. Document reordering

The assignment of docIDs to a given document database is not trivial, being an important problem in information retrieval
(Barla Cambazoglu & Baeza-Yates, 2015; Büttcher et al., 2010), and databases (Johnson, Krishnan, Chhugani, Kumar, &
Venkatasubramanian, 2004; Lemire, Kaser, & Aouiche, 2010). This task—usually known as document reordering—sorts the documents
in D , to then assign the docIDs following this order. For instance, sorting the documents according to their URLs is a simple and
effective method (Silvestri, 2007). These are called ordered document collections and will be the focus of this paper. Document re-
ordering is not always feasible, as discussed in Yan et al. (2009). However, there are still many applications where this can be used.

The advantage of assigning docIDs in an optimized way is that it yields smaller DGaps in the inverted lists, hence better com-
pression can be achieved. Although the original problem can be formulated as an instance of the TSP problem (an hence, it is NP-
Complete) (Shieh, Chen, Shann, & Chung, 2003), there are several heuristic approaches that achieve a better compression perfor-
mance (Blanco & Barreiro, 2005; Blandford & Blelloch, 2002; Shieh et al., 2003; Silvestri, 2007; Silvestri, Orlando, & Perego, 2004),
and in general a much better inverted index performance (Tonellotto, Macdonald, & Ounis, 2011; Yan et al., 2009). Improvements of
up to 50% both in space usage and Document at a Time (DAAT from now on) query processing have been reported (Ottaviano &
Venturini, 2014; Tonellotto et al., 2011; Yan et al., 2009). This problem has been also studied for databases and bitmap indexes
(Johnson et al., 2004; Lemire et al., 2010), and for the particular case of e-Commerce (Ramaswamy, Konow, Trotman, Degenhardt, &
Whyte, 2017), among others, with similar conclusions.

A remarkable feature of ordered document collections is that the number of consecutive docIDs within inverted lists is increased,
which explains the improvement in space usage. For instance, after reordering the well-known TREC GOV2 document collection,
about 60% of the postings correspond to consecutive docIDs, whereas a random ordering yields just 11% of consecutive docIDs.

But, more importantly, these consecutive docIDs actually form long runs in the inverted lists. These runs of consecutive docIDs are
runs of 0s when gap encoded. Rather than regarding these 0s separately in the encoding, we propose to deal with the runs as a whole.
Having runs of equal symbols in a sequence allows us to use, for instance, run-length encoding (Golomb, 1966): we simply encode a
run writing its length. For inverted lists, however, using run-length encoding would not be as effective as for other applications, as
there are only runs of 0s: other values rarely form long runs. To tackle this issue, we introduce compression approaches that mix gap
encoding along with run-length encoding. The idea is that run-length encoding is used for the segments where runs occur, leaving gap

D. Arroyuelo et al. Information Processing and Management xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/10998009

Download Persian Version:

https://daneshyari.com/article/10998009

Daneshyari.com

https://daneshyari.com/en/article/10998009
https://daneshyari.com/article/10998009
https://daneshyari.com

