

Review

Contents lists available at ScienceDirect

Opto-Electronics Review

journal homepage: http://www.journals.elsevier.com/opto-electronics review

of arsenic incorporation in molecular-beam epitaxy-grown films.

Ion etching of HgCdTe: Properties, patterns and use as a method for defect studies[☆]

I.I. Izhnin^{a,b}, K.D. Mynbaev^{c,d,*}, A.V. Voitsekhovskii^b, A.G. Korotaev^b, O.I. Fitsych^e, M. Pociask-Bialv^f

ABSTRACT

^a Scientific Research Company "Carat", Lviv 79031, Ukraine

^b National Research Tomsk State University, Tomsk 634050, Russia

^c loffe Institute, St.-Petersburg 194021, Russia

^d ITMO University, St.-Petersburg 197101, Russia

^e P. Sahaydachnyi National Army Academy, Lviv 79012, Ukraine

^f Center for Microelectronics and Nanotechnology of the University of Rzeszow, Rzeszow 35-310, Poland

ARTICLE INFO

Article history: Received 16 January 2017 Accepted 28 March 2017 Available online 29 April 2017

This review is dedicated to the memory of our friend and colleague Prof. V.V. Bogoboyashchyy.

Keywords: HgCdTe Ion etching Photodetectors Defects Doping

1. Introduction

$Hg_{1-x}Cd_{x}Te$ (MCT) solid solutions, since they were synthesized for the first time at Royal Radar Establishment (UK) and Lviv State Pedagogical Institute (USSR) in the middle of the last century [1,2], have remained the basic material for the fabrication of highly effective photodetectors operating in the infrared (IR) part of the spectrum $(2.5-20 \,\mu m)$ [3]. This status of MCT is pre-defined by the electronic structure of this material and is expected to remain such for at least two decades more.

In MCT technology, methods of 'dry etching', including ion-beam milling or reactive ion etching, are used quite widely. These processing techniques are based on the irradiation of the surface of the

material with low-energy (0.2-2 keV) ions of noble gases (mostly Ar) or mixture of Ar with chemically active gases (H₂, CH₄). Initially, such etching was used for dry cleaning and sputtering of the material with the aim of formation of specific surface topology and/or contact areas of sensitive elements of photodetectors [4–6]. Later, ion etching was used to form the topology of MCT-based matrixtype mesa-diodes, including multi-color ones [7-9]. The results of the use of various types of dry etching in application to MCT etching in a sense of sputtering (material removal) were reviewed in Ref. [10], yet the effect of such treatment on *physical* properties of MCT in that paper was not considered.

Analysis is performed of the contemporary views on the effect of ion etching (ion-beam milling and reac-

tive ion etching) on physical properties of HgCdTe and on the mechanisms of the processes responsible for

modification of these properties under the etching. Possibilities are discussed that ion etching opens for

defect studies in HgCdTe, including detecting electrically neutral tellurium nanocomplexes, determining background donor concentration in the material of various origins, and understanding the mechanism

© 2017 Association of Polish Electrical Engineers (SEP). Published by Elsevier B.V. All rights reserved.

In 1981, in a patent by Wotherspoon [11] it was declared, for the first time, that ion etching of vacancy-doped p-MCT (where conductivity type was defined by intrinsic acceptors, mercury vacancies V_{Hg}) led to *p*-to-*n* conductivity type conversion (CTC). This effect was proposed as a tool for fabrication of *p*-*n* junctions of photodiodes. Wide-scale studies of the effect of ion etching on the properties of MCT began after 1990, and at that time, this method also was introduced into industrial production of photodiodes. As the properties of MCT change in a similar way under both ion

http://dx.doi.org/10.1016/i.opelre.2017.03.007

1896-3757/© 2017 Association of Polish Electrical Engineers (SEP). Published by Elsevier B.V. All rights reserved.

 $[\]stackrel{\text{\tiny theta}}{=}$ This article is an expanded version of the scientific reports presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22-25, 2016, Rzeszow, Poland.

Corresponding author at: Ioffe Institute, St.-Petersburg 194021, Russia.

E-mail addresses: i.izhnin@carat.electron.ua (I.I. Izhnin), mynkad@mail.ioffe.ru (K.D. Mynbaev).

List of abbreviations and symbols used throughout the text	
Abbrevia	tions
AO	anodic oxide
CTC	conductivity type conversion
DC	direct current
EBIC	electron beam induced current
IE	ion etching
ISOVPE	isothermal vapor-phase epitaxy
LBIC	laser-beam induced current
LPE	liquid phase epitaxy
MBE	molecular beam epitaxy
MCT	mercury cadmium telluride, $Hg_{1-x}Cd_xTe$
MOCVD	metal-organic chemical vapor deposition
IVISA DE	mobility spectrum analysis
NF SIMS	secondary ion mass spectroscopy
VPF	vapor-phase epitaxy
WBPL	wide-bandgap protective layer
	the sundup proceed on ager
Symbols	
а	HgCdTe lattice parameter
В	magnetic field
C_{V0}	initial concentration of mercury vacancies in the
C	damaged area
C_{W0}	damaged area
d:	conductivity type conversion denth
d_r	conductivity type conversion depth reduced to mer-
	cury vacancy concentration
D	ion dose
D_I	mercury interstitial diffusion coefficient
D_V	mercury vacancy diffusion coefficient
E_C	energy of the conduction band
E_F	Fermi energy
E_g	energy gap
E _M	energy of mercury interstitial migration
E _V E	ion energy
L P	elementary charge
$I(I_{H_{\alpha}})$	mercury flux
i (Jng)	ion current density
Hg _I	interstitial mercury
$[Hg_I]_S$	concentration of Hg_l in the diffusion source under
	ion etching
k_B	the Boltzmann constant
K_F	equilibrium constant for the reaction between mer-
1	cury vacancy and interstitial
ĸ _F	reaction rate constant between mercury vacancy
k	and interstitial
κ_W	and interstitial
KrM	equilibrium constant for the reaction between inter-
	stitial mercury and I-group acceptor
K _X	equilibrium constant for the reaction between inter-
	stitial mercury and arsenic atom
L _d	defect layer thickness, radius of defect zone
L_y	protective layer thickness
l ₀	a factor
N ₀	node density in crystal (sub)lattice
IN _A	acceptor concentration
N _{AS}	aisenic concentration
INBD	Dackground donor concentration

$N_{A} = N_{D}$	
$I_A - I_D$	$(N_D - N_A)$ concentration of uncompensated accep-
	tors (donors)
N _{In}	indium concentration
N _{tr}	density of capture centers for mercury interstitials
п	electron concentration
n_{77i}	electron concentration measured straight after ion
	etching
n_{77f}	electron concentration measured after relaxation
$n_{77(0)}$	electron concentration measured before ion etching
n _i	intrinsic carrier concentration
p ₇₇	hole concentration measured at 77 K
$R(\mathbf{r},t)$	rate of mercury interstitial capture on radiation-
	induced defects
R_H	the Hall coefficient
R_p	projected ion path
r_F	mercury interstitial caption radius on a mercury
	vacancy
r_W	mercury interstitial caption radius on a mercury
	bivacancy
r_0	screening length (radius)
S	effective cross-section of the defect formation zone
SI	a function describing Hg _l source
T	temperature
T _{cr}	temperature of the cracker cell in MBE of MCT
T _{src}	temperature of the arsenic source in MBE of As-
	doped material
T_s	sample temperature during ion etching
T_{sb}	substrate temperature during MCT growth
t	time
$V_{\rm Hg}$	mercury vacancy
	increary racancy
W_{Hg}^{\times}	neutral mercury bivacancy
$W_{ m Hg}^{ imes}$	neutral mercury bivacancy alloy composition (CdTe molar fraction in
$W_{ m Hg}^{ imes}$ x	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$)
W_{Hg}^{\times} x x_a	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi-
$W_{\mathrm{Hg}}^{ imes}$ x x_a	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure
$W_{ m Hg}^{ imes}$ x x_a $x_j d_j$	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth
$W_{ m Hg}^{ imes}$ x x_a $x_j d_j$ x_y, y	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide-
W_{Hg}^{\times} x x_a $x_j d_j$ x_y, y	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer
W_{Hg}^{\times} x x_{a} $x_{j} d_{j}$ x_{y}, y z	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface
W_{Hg}^{\times} x x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0}	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency
W_{Hg}^{\times} x x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant
W_{Hg}^{\times} x x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cX}	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter-
W_{Hg}^{\times} x x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cX}	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic
$W_{Hg}^{\times} x$ x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cX} ΔL_{0}	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic thickness of the defect layer that acts as a mercury
W_{Hg}^{\times} x x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cx} ΔL_{0}	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic thickness of the defect layer that acts as a mercury source
$W_{Hg}^{\times} x$ x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cX} ΔL_{0} μ_{n77}, μ_{1}	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic thickness of the defect layer that acts as a mercury source $_{777}$ carrier mobility measured at 77 K
$W_{Hg}^{\times} x$ x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cX} ΔL_{0} μ_{n77}, μ_{I} σ	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic thickness of the defect layer that acts as a mercury source $_{777}$ carrier mobility measured at 77 K conductivity
$W_{Hg}^{\times} x$ x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cx} ΔL_{0} μ_{n77}, μ_{I} σ φ	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic thickness of the defect layer that acts as a mercury source r_{77} carrier mobility measured at 77 K conductivity electric potential
$W_{Hg}^{\times} x$ x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cX} ΔL_{0} μ_{n77}, μ_{1} σ φ Φ	neutral mercury bivacancy alloy composition (CdTe molar fraction in $Hg_{1-x}Cd_xTe$) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic thickness of the defect layer that acts as a mercury source mercury the formation at 77 Kconductivityelectric potentialion fluence
$W_{Hg}^{\times} x$ x_{a} $x_{j} d_{j}$ x_{y}, y z δ_{0} ε ΔH_{cX} ΔL_{0} μ_{n777}, μ_{1} σ φ Φ τ	neutral mercury bivacancy alloy composition (CdTe molar fraction in Hg _{1-x} Cd _x Te) alloy composition in the active layer of heteroepi- taxial HgCdTe structure conversion depth composition at the surface of graded-gap wide- bandgap protective layer co-ordinate axis normal to crystal surface mercury deficiency dielectric constant enthalpy of the formation of the complex of inter- stitial mercury with arsenic thickness of the defect layer that acts as a mercury source more conductivity electric potential ion fluence non-equilibrium carrier lifetime

milling and reactive ion etching, we shall further refer to both kinds of treatment as to 'ion etching' (IE). Also, as the main patterns of the changes in the properties of MCT under IE are valid for the material with *p*- and *n*-type, we shall often speak of 'modification' of these properties.

Some aspects of the effect of IE on the properties of MCT were reviewed by Ivanov-Omskii and Mynbaev in 2002 [12]. At that point, it looked like that the development of the technology was far ahead of understanding of physical processes that occurred under IE. In the last 15 years this understanding has demonstrated a substantial progress. In particular, the effect of IE on the properties of Download English Version:

https://daneshyari.com/en/article/10998345

Download Persian Version:

https://daneshyari.com/article/10998345

Daneshyari.com