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Plant metabolism is characterized by a wide diversity of

metabolites, with systems far more complicated than those of

microorganisms. Mathematical modeling is useful for

understanding dynamic behaviors of plant metabolic systems

for metabolic engineering. Time-series metabolome data has

great potential for estimating kinetic model parameters to

construct a genome-wide metabolic network model. However,

data obtained by current metabolomics techniques does not

meet the requirement for constructing accurate models. In this

article, we highlight novel strategies and algorithms to handle

the underlying difficulties and construct dynamic in vivo models

for large-scale plant metabolic systems. The coarse but

efficient modeling enables the prediction of unknown

mechanisms regulating plant metabolism.
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Introduction — metabolomics has accelerated
plant functional genomics
In the past two decades, metabolomics, in combination

with transcriptomics, has been efficiently utilized for

plant functional genomics. An integrated metabolomics

strategy has enabled discovery and characterization of

new genes involved in the biosynthesis of plant natural

products or specialized metabolites (previously called

secondary metabolites) [1]. This strategy is based on

omics-based ‘hypothesis generation,’ in other words,

‘prediction of gene function.’ As large-scale transcriptome

and metabolome datasets have revealed that many genes

that encode enzymes involved in a pathway are coex-

pressed with each other and with accumulation of path-

way metabolites [2–4], one can predict gene function

based only on sequence similarity and coexpression rela-

tionships among genes [5]. Metabolic profile of a knock-

out mutant of a gene is a direct in vivo evidence of its

predicted function; therefore, metabolomics provides a

tool for confirmation of predicted gene function.

Because metabolomes directly represent in vivo metabolic

status, metabolomics also helps us reveal relationships

among metabolites and metabolic fluxes in a metabolic

reaction network or metabolic system (Figure 1). In the

following sections, we introduce a novel strategy for meta-

bolomics-based mathematical modeling and discuss its

technical difficulty and the solution, aiming at an under-

standing of complicated plant metabolic reaction networks.

Predictive metabolic engineering is a
challenge in plant science
For sustainable production of food, chemical compounds,

and biofuels, metabolic engineering of plants is becoming

increasingly important. Plant metabolic engineering has

two purposes. One is to utilize plant cells as green facto-

ries for the production of chemicals or plant natural

products, because they have been widely used as med-

icines, pigments, flavors, etc. since ancient times and

often accumulate in very small quantities in plant tissue

[6–14,15��]. Because plants are also used as food, feed,

and fuels, another purpose of metabolic engineering is to

develop a plant with customized characteristics, such as

staple crops with improved nutritional value and energy

crops with enhanced biomass or oil content [14,16–19]. A

number of successful examples can be found in microbial

metabolic engineering, which is based on an extensive

systems-level understanding of metabolic and regulatory

networks [20��]. Many tools and strategies enable micro-

bial metabolic engineering in more sophisticated and

diverse ways [21�]. On the other hand, plant metabolic

engineering is still challenging; it often yields results

different from what was expected, presumably because

plant metabolic networks are spread across multiple

organelles and are extremely complex as compared to

microorganisms [15��,20��].

The biosynthetic pathways of plant natural products

seem comparatively simple; the main route of biosynthe-

sis chiefly comprises linear pathways, and the compounds

of interest are largely end products of the pathways. The
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pathway enzymes are regulated mainly at the transcrip-

tional level via a relatively small number of transcription

factors, resulting in a simple relationship between flux

size and metabolite pool (metabolite accumulation). In

contrast, primary metabolism involving carbon fixation,

central carbon metabolism, and energy metabolism is

composed of complicated pathways including many

branches and loops, and regulated at multiple omics-layer

levels, including regulation of enzymatic activities by

metabolites. This factor makes it difficult to anticipate

the influence of changes in flux size on metabolite accu-

mulation and vice versa. As a result, compared to metabolic

engineering for chemical production, modification of

primary metabolism seems far more difficult.

An example of plant metabolic engineering aiming at

value-added staple crops targets the biosynthesis of aspar-

tate (Asp)-family amino acids, because this pathway pro-

duces four essential amino acids (threonine, lysine,

methionine, and isoleucine) for humans and non-rumi-

nant livestock. Plants tightly regulate this pathway at the

enzymatic level, where key enzymes are inhibited or

activated by the pathway metabolites [17]. When a crop

is used as a sole protein source for humans and livestock,

the amounts of these amino acids are imbalanced. Thus,

many transgenic studies have been conducted to realize

desirable amino acid compositions in crops [16,17]. Math-

ematical modeling has also been exploited to understand

this metabolism as a system and clarify relationships

among metabolite contents and metabolic fluxes [22,23].

Construction of mathematical models of
metabolic reaction networks
In general, the types of mathematical models of metabolic

reaction networks vary from large-scale qualitative mod-

els to small-scale quantitative models. The former

includes topological and stoichiometric models, while

the latter includes kinetic models [24�]. Flux balance

analysis (FBA) is one of the stoichiometric and static

modeling methods [25]. Since FBA assumes a steady

state and thus does not require kinetic information, it

is widely used to construct genome-scale models of vari-

ous plant species [26–32]. On the other hand, kinetic

models are constructed to understand dynamic character-

istics of a smaller metabolic system, such as Asp-family

amino acid biosynthesis [22,23].

To construct kinetic models, flux is often expressed as a

function of metabolite concentrations and kinetic prop-

erties of enzymes, using kinetic rate laws such as

Michaelis–Menten kinetics. In this case, model param-

eters are Michaelis constants and maximum velocities of

enzymes, whose numerical values are determined in
vitro. As these values may not represent actual in vivo
performance of enzymes, considerable experimental

effort is put to make a constructed model biologically

reasonable. For example, a model including 11 metabo-

lites and 18 fluxes was constructed to understand inter-

actions among allosteric regulations in Asp-family amino

acid biosynthesis in Arabidopsis thaliana, while the

kinetic parameters of involving enzymes were measured

in vitro with taking utmost care to maintain biological

relevance [22,23]. To capture flux redistributions caused

by genetic manipulations, Colón et al. (2009) constructed

a benzenoid biosynthesis model in petunia flower, which

includes 17 metabolites and 35 fluxes, with the kinetic

parameters determined from in vivo metabolite pool

sizes and labeling patterns obtained via feeding experi-

ments [33].

Alternatively, flux is expressed in power-law expressions

in the framework of biochemical systems theory (BST)

[34–37] to construct kinetic models. In BST, metabolic

systems are mainly represented in the following two types

of power-law formalisms: the saturable and synergistic

(S)-system and generalized mass action (GMA)-system.

S-system:

dXi

dt
¼ ai

Xnþm

j¼1

X
gij
j � bi

Ynþm

j¼1

X
hij
j ¼ Vi � V�i ð1Þ

where Xi is the metabolite concentration, ai and bi are the

rate constants for net influx Vi and efflux V�i, respectively,

gij and hij are the kinetic orders, n and m are the numbers of

dependent and independent variables, respectively, and t
is the time. It should be noted that influxes and effluxes in

Equation 1 are individually grouped into one power-law

form.

GMA-system:

dXi

dt
¼

Xp

k¼1

Aik

Ynþm

j¼1

X
Gijk
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Xq

k¼1

Bik
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An example of a metabolic reaction network. Xi (n = 1, . . . , 4)

denotes metabolites. Black arrows represent metabolic fluxes denoted

as vi (n = 1, . . . , 6). In this case, X3 inhibits and activates the

enzymes governing v2 and v5, respectively.
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