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A B S T R A C T

The US Midwest encompasses one of the largest intensive maize (Zea mays L.) production environments in the
world. Managing these lands in a more sustainable way is essential to reducing environmental stresses. This
study explores the potential of Adapt-N, a dynamic biogeochemical model, to more precisely manage N inputs
compared to a static N management approach, the Maximum Return to N (MRTN). Data from 16 multiple N rate
trials conducted over two years (2013–2014) in three Midwest states were used to reconstruct two yield response
functions: quadratic (QD) and linear-plateau (LP), allowing estimation of the Economic Optimal N Rate (EONR),
and yields resulting from Adapt-N and MRTN recommendations. Model-based N rates were better correlated
with the EONR based on the LP function, and were similar based on the QD function. Applying a dynamic
approach to N recommendations allowed a significant reduction in applied N (averaging 28 kg ha−1; 13%)
without compromising yield, thereby maintaining farmer’s profits while reducing simulated environmental N
losses. Longer-term simulations showed that the largest reductions in N rates by Adapt-N compared to the MRTN
occurred in dry seasons when early season N losses were small. This study shows that model-based N re-
commendations can have both economic and environmental benefits compared to a static N management ap-
proach.

1. Introduction

Managing agricultural systems more sustainably is a major current
global challenge (Garnett et al., 2013; Godfray et al., 2010; Lipper et al.,
2014; Tilman et al., 2011; Zhang et al., 2015). The global consumption
of fertilizer-N has increased in the last few decades to allow greater crop
production and accommodate the growing world population and food
demand (Erisman et al., 2008). However, increased fertilizer con-
sumption is often associated with low N Use Efficiency (NUE – the ratio
of N removed by crop products to the field N input, Zhang et al., 2015),
indicating that a large proportion of applied N is lost from agricultural
fields into the environment. Such N losses have a substantial cost to
society across multiple facets (Sobota et al., 2015; van Grinsven et al.,
2015), including nitrate (NO3) losses below the root zone that readily
contaminate ground water, surface water, and estuaries (David et al.,
2010; Diaz and Rosenberg, 2008; Gu et al., 2013), and nitrous oxide
(N2O) losses that pose significant greenhouse gas concerns (Smith et al.,
2008). These contribute to human and ecosystem health issues
(Johnson et al., 2010; Keeler et al., 2016; Thurber et al., 2014;

Townsend et al., 2003).
In the US, maize is the single largest consumer of N fertilizer

(157 kg ha−1 on average, USDA ERS, 2013). NUE of maize crops in the
US is often relatively low (0.37; Cassman et al., 2002), indicating that a
large amount of N is lost to the environment in these agricultural
production environments. The Mississippi River Basin is home to a large
intensive row crop production region, the Midwest Corn Belt, encom-
passing 85% of all US maize production (USDA ERS, 2016). Excess
nutrients from agricultural fields are transported down the Mississippi
River, risking water resources and contributing to an extensive annual
hypoxia zone in the Gulf of Mexico (Rabalais et al., 2002, 2007). De-
spite major efforts in nutrient management planning, reducing nutrient
loading into the Gulf and shrinking the hypoxia zone has proven to be
very challenging, with the 2017 hypoxia zone the largest ever recorded
(NOAA, 2017a).

One solution to the problem of excess nutrients is to better syn-
chronize applied N with crop N demand and eliminate excessive N
applications. However, determining the right N rate for a specific field
is challenging as soil N availability is affected by multiple interacting
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factors such as weather (Kahabka et al., 2004; Xie et al., 2013), soil type
(Shahandeh et al., 2005), and soil organic matter levels (Mulvaney
et al., 2001). In addition, the timing (McLellan et al., 2018), formula-
tion (Abalos et al., 2014; Halvorson et al., 2014), and placement of N
fertilizer (Nkebiwe et al., 2016), as well as rotations, cover crops
(Melkonian et al., 2017), use of stabilizers, etc. affect N losses and soil N
availability, and hence the N rate needed to secure season long crop N
requirements. Therefore, the optimal N rate needed to reach a specific
target yield is expected to vary spatially among fields, and temporally
for the same field. The uncertainty associated with the proper N rate for
a specific field, together with low fertilizer prices relative to high rev-
enues from crop yields, lead many farmers to apply excessive fertilizer
(Dobermann and Cassman, 2004) to ensure the crop growth is not
limited by N availability.

Several tools have been developed that generate suitable N re-
commendations for grower fields (Morris et al., 2018). These can be
classified as static or adaptive. An example of a static approach is the
Maximum Return to N (MRTN; Sawyer et al., 2006), an empirical ap-
proach promoted in the US Corn Belt by university extension services.
This method utilizes datasets of multiple N rate trials where the re-
lationship between N rate and yield was quantified via an N-response
curve, allowing for the estimation of the most profitable N rate. While
using an average, static N rate might ease implementation by growers,
this approach does not account for highly variable production en-
vironments or the seasonal dynamics of soil N. The MRTN guidelines
acknowledge that the method cannot predict site-specific N require-
ments (Sawyer et al., 2006) and, in some cases, the guidelines point to
other tools such as soil tests or canopy sensors to fine-tune field N
management (Camberato and Nielsen, 2017).

Adaptive N recommendation tools for maize include soil tests (e.g.,
the Pre-Sidedress Nitrogen Test; Magdoff et al., 1984), or more dynamic
tools such as crop canopy N sensors (Kitchen et al., 2010; Scharf et al.,
2011), and physically-based models such as Adapt-N (Melkonian et al.,
2008; Sela et al., 2016), Maize-N (Setiyono et al., 2011), or APSIM
(Holzworth et al., 2014). Model-based N recommendation tools are
appealing as they are highly scalable and can be coupled with site-
specific weather data and field management conditions (e.g., yield ex-
pectation, tillage, crop hybrid and data regarding residual N) to gen-
erate highly space and time-specific N recommendations. For split N
management, where the bulk of N is applied in-season, Thompson et al.
(2015) found model-based N recommendations to be comparable with
in-season N recommendations derived from crop canopy sensors for
sites in MO, NE and ND. The Adapt-N tool was recently found to per-
form favorably over the grower regular practice in strip trials conducted
in Iowa and New York (Sela et al., 2016), allowing for a significant
reduction in N application without yield loss. In another study, Adapt-N
better predicted the Economic Optimum N Rate (EONR) while reducing
environmental losses when compared with a static N recommendation
tool in multiple N rate trials conducted in NY (Sela et al., 2017). A
dynamic model-based approach allows flexibility in adjusting N rates
depending on interactions of site-specific seasonal weather conditions
with soil, crop and management factors (Sela et al., 2016, 2017).
Therefore under drier circumstances, where weather-induced N losses
are minimal, a model-based approach will recommend lower N than
under wetter conditions. In contrast, static N recommendations do not
account for seasonal weather. There is a need to understand how dy-
namic N rates adjust to account for different weather, soil and man-
agement conditions, and how they compare to a static approach. This is
addressed here using a dataset of multiple N rate trials conducted in
three Midwestern states – IN, OH and WI – during the 2013–2014
growing seasons using Adapt-N as an example of a dynamic model-
based tool and the MRTN approach as a conventional static method.
The hypothesis for this study was that the dynamic approach allows
grower profits to be maintained while N application rates and related
environmental effects are appreciably reduced.

2. Materials and methods

2.1. Maximum Return to N (MRTN)

The MRTN approach (Sawyer et al., 2006) relies on a large dataset
of field trials where multiple N rates and the corresponding yields were
used to generate grain yield to fertilizer response curves. For each state
(and in some states different regions or soil types), the recommended N
rate is based on an average (multi-year and site) yield response curve,
from which the largest average net return is identified. Recommenda-
tions can vary with grain-to-fertilizer price ratio or according to the
crop rotation. The method allows for the calculation of a range of N
rates that are expected to result in a profitable yield. For this study,
MRTN rates were determined from an on-line calculator http://cnrc.
agron.iastate.edu/, based on a maize grain price of $0.197 kg−1

($5 bu−1) and N fertilizer price of $1.098 kg−1 ($0.5 lbs−1) – average
values for the period 2007–2013 (USDA NASS, 2015; USDA ERS, 2015).
In all trials, the in-season sidedress N recommendation by the MRTN
approach was calculated as the total N recommended minus any N
applied prior to sidedress time, i.e., preplant or starter.

2.2. Adapt-N

A detailed description of the Adapt-N tool and input data needed to
run a simulation is provided in Table A.1 (Sela et al., 2016). Adapt-N is
a web-based tool accessible through internet-connected devices that
support web browsers. The tool uses high resolution daily weather data
(4×4 km), available in near real-time (6 h lag). Relevant climate data,
such as precipitation and temperature, are derived from routines using
the US National Oceanic & Atmospheric Administration's Rapid Update
Cycle (NOAA RUC) weather model and operational Doppler radars. The
engine of the Adapt-N tool is the Precision Nitrogen Management
(PNM) model (Melkonian et al., 2002), an integration of the LEACHN
biogeochemical model (Hutson, 2010) with a crop growth model
(Sinclair and Muchow, 1995). The result is a 1-D biogeochemical model
that simulates soil hydrology, N fluxes through the soil-plant-atmo-
sphere continuum, as well as plant N uptake and growth on a daily time
step. The model accounts for mineralization of organic matter and the
immobilization of N by the microbial biomass as a function of C and N
flows into the biomass pool. The model also accounts for the effect of
soil moisture and temperature on N transformation rates and estimates
soil N, crop N uptake, atmospheric gaseous N losses, and nitrate
leaching below the root zone. The LEACHN model was extensively
validated in previous studies (e.g., Jabro et al., 1995, Jabro et al., 2006;
Sogbedji et al., 2001a,b). The PNM model was successfully validated in
previous studies in different production environments, with good
agreement between simulated results and observed water drainage,
nitrate leachate, soil inorganic N and crop N uptake (Marjerison et al.,
2016; Melkonian et al., 2017; Sogbedji et al., 2006).

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.compag.2018.08.010.

The Adapt-N tool utilizes data from the PNM model to generate near
real-time N recommendations by solving a dynamic mass balance
equation on a daily basis (all units in kg ha−1):

= − − − − −N N N N N N Nrec exp_yld crop_now soil_now rot_credit fut_gain_loss profit_risk (1)

where Nrec is the N rate recommendation; Nexp_yld is the total crop N
quantity needed to achieve the expected (potential) yield, a value
supplied by the user for each field or zone; Ncrop_now and Nsoil_now are
the N quantity in the crop and the inorganic N quantity in the soil as
simulated by the PNM model for the current simulation date accounting
for previous N applications; Nrot_credit is a partial N credit from crop
rotation (e.g. soybean crop); Nfut_gain-loss is a probabilistic estimate of
future N gains from organic N mineralization minus losses until the end
of the growing season, based on model simulations with historical
rainfall distribution functions; and Nprofit_risk is an economic adjustment
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