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h i g h l i g h t s

� An evolutionary framework for scheduling of multipurpose batch plants.
� A method that does not rely on time or event points.
� No need for binary variables.
� The method does not suffer scalability issues of mathematical programming methods.
� Solution times reduced by almost 98% in sufficiently long time horizons.
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a b s t r a c t

A genetic algorithm (GA) is proposed along with a general framework for the scheduling of a typical mul-
tipurpose/product batch plant. The majority of literature regarding these problems make use of mathe-
matical programming methods. Modelling problems in this manner leads to numerous binary variables
relating to material balance and sequence of batches along long time horizons, thus resulting in large
computational time. The proposed GA does not suffer the same scalability issues of mathematical pro-
gramming approaches. The GA makes use of a coupled chromosome system with specific crossover
and mutation functions utilised with the purpose of profit maximisation. Results show that optimal or
close-to-optimal solutions can be achieved with a reduction of up to 98.53% computational time in cer-
tain cases.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades batch process research has arisen in
both industrial and academic domains alike. Economic changes
have led to a demand for high value – small volume products.
The flexible nature of batch plants allow for the production of mul-
tiple products utilising the same facility. However, this benefit
results in increased complexity in the scheduling of the facility.
Plant configurations differ in complexity, ranging from simpler
single-stage plants (numerous parallel machines) to challenging
multistage and multipurpose plants. A large and growing amount
of research focusses on the development of optimisation
techniques to determine these schedules, specifically schedules
that minimize the time required to attain a given objective value.

Ideally these techniques should find this objective value in the
minimum computational time possible.

Earliest work in process scheduling primarily focussed on flow-
shop and general multistage batch plants while seminal work on
multipurpose batch plants was proposed by Kondili et al. (1993).
Unlike the complexity of multistage plants, solving for the sched-
ules of multipurpose plants is inherently NP-Hard due to the vast
combinatorial enumeration. The majority of mathematical formu-
lations pertaining to multipurpose batch plant scheduling are
based upon three major representations, namely: (i) the state task
network (STN) introduced by Kondili et al. (1993); (ii) the resource
task network (RTN) proposed by Pantelides (1994); (iii) the state
sequence network (SSN) developed by Majozi and Zhu (2001).
These three representations can be applied to any situation ranging
from batch to continuous processes which may consist of tasks
both variable and constant in nature. Models utilising these formu-
lations are able to account for various complex network situations
such as recycle streams, mixing/splitting batches, variable batch
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sizes, while also satisfying storage scenarios such as; no intermedi-
ate storage (NIS), finite intermediate storage (FIS) and unlimited
intermediate storage (UIS). These models generally invoke the
optimisation of the maximisation of profit over a known fixed time
horizon or minimisation of makespan, where the number of
batches is known a priori.

In any of the aforementioned formulations, time can be handled
with either discrete-time models or continuous-time models.
Pioneering models initially made use of discrete-time representa-
tions (Kondili et al., 1993). The major drawback in these cases
was that in order to discretise the time horizon into a meaningfully
accurate way, the number of binary variables scaled into the sev-
eral thousands. The tractability of this approach drops off rapidly
as soon as one attempts to solve any large size problems. Subse-
quent work on discrete-time representations was done by Shah
et al. (1993). Here, task process times are set to be constant, with
the time horizon carved into intervals of the greatest common fac-
tor of all task processes. Flaws exist when considering constant
processing times as they often may not be plausible due to task
process times potentially differing significantly. A further concern
is interval widths which could become unnecessarily small leading
to an exponential increase in the number of intervals required, ren-
dering the model unsolvable. This gave rise to the development of
the continuous-time representation (utilising all three network
representations), notably by Schilling and Pantelides (1996),
Zhang and Sargent (1996), Ierapetritou and Floudas (1998),
Mockus and Reklaitis (1999), Majozi and Zhu (2001), Giannelos
and Georgiadis (2002) and Maravelias and Grossmann (2003).
Variable process times were now possible and the time horizon
was segmented into intervals of unknown and unequal duration.
This approach allowed for more realistic scenarios to be modelled
and solved. These intervals are achieved through the use of event
points. Specifically, the event points note the position on the time
domain where a task(s) begins or ends. A detailed review is not
planned here but the interested reader is referred to the excellent
reviews done by Floudas and Lin (2004), Méndez et al. (2006) and
Shaik et al. (2006). A major drawback in this approach is that the
number of event points required to find a global optimum is not
known beforehand. Common practice appears to slowly increase
this number until the objective value no longer improves. While
this may be true in some cases it simply cannot be stated that this
is generally true. Interestingly, this suggests that the claim for glo-
bal optimality should not necessarily be claimed but rather
hypothesised and stated as the best optimum thus far.

The above advances in continuous-time formulations and STN/
SSN approaches primarily attempt to reduce the number of binary
variables in the formulation, thus allowing for a more feasible com-
putational solution time. When considering larger scale scheduling
problems however, the number of binary variables is set to scale
regardless of the quality of the representation, resulting in intract-
able solution times. Since the aforementioned issue regarding the
selected number of event points required exists, the suggestion
of non-deterministic techniques being applied to these problems
seems relevant. This is especially true when considering the

scalability of these techniques when large problem sizes are
involved. Some work has been conducted in the application of
metaheuristic techniques to batch processes, such as a genetic
algorithm (GA) in Azzaro-Pantel et al. (1998) showing promise
for large scale combinatorial problems. Cantón Padilla (2003) illus-
trates speed comparisons between mixed integer linear pro-
grammes (MILP) and a GA in the scheduling of chemical batch
plants. The majority of this early work either focussed on the
design of batch plants using metaheuristics such as Cavin et al.
(2004) or the single-stage or multiproduct batch plant scheduling
as found in He and Hui (2006, 2007). In terms of solving multipur-
pose process scheduling through metaheuristics, very little litera-
ture exists. He and Hui (2010) introduce an extremely fast GA
which comprehensively out-competes top performing MILP mod-
els by orders of magnitude. Unfortunately, the framework in which
the GA is designed exploits the nature of the case study solved as
well as considering constant process time. Although this is a useful
contribution, it lacks a generalised framework to apply to other
problems.

This work investigates a well-posed and well understood case
study of a multipurpose batch plant. Originally presented in
Kondili et al. (1993), the example contains batch mixing and split-
ting as well as a recycling stream. In our approach we do not make
use of the STN in the holistic sense but obey the constraints and
material balances outlined by it. In addition, the flowsheet is also
involved and the state of this is monitored through the solution
technique. The solution technique used here is a generalised GA
involving two chromosomes. The remainder of the paper is
layed-out in the following way. Section 2 outlines the problem
description, Section 3 illustrates the solution mechanism, Section 4
discusses results for both a motivating example as well as the illus-
trative case study and Section 5 pertains to the overall discussion
and conclusions.

2. Problem description

Before introducing the new framework and solution method,
we discuss the two examples to be utilised. In Figs. 1 and 2, we
have a simple multiproduct literature example introduced by
Ierapetritou and Floudas (1998). Table 1 provides the pertinent
data. Here we have a single product produced in the multiproduct
facility, involving mixing, reaction and purification stages. The
specific literature example has been well utilised when introducing
a new framework. The primary literature example used as
introduced by Kondili et al. (1993) is described in Figs. 8 and 9
respectively.

In both examples we consider variable processing times. As
mentioned previously, most approaches thus far have made use
of mathematical programming. These have been successful in
handling constraints when dealing with assigning of batch tasks
to units while preserving the material balances for the resultant
states. They also effectively handle the syntactical structure of
the plant layout such as sequence dependence and storage

Nomenclature

a rate for neighbourhood radius
�v i vector of volume states at given event point i
b mutation rate for child mutation
c selection rate for parent selection
c integer crossover point for chromosomes
H the time horizon

I ¼ i j i ¼ event pointf g the set of all event points
J ¼ j j j ¼ unitf g the set of all units
n ¼j I j the number of event points in the set I
subsij instruction set for unit j at event point i
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