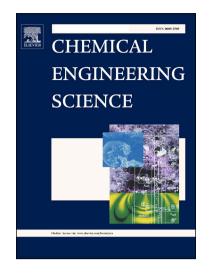
Accepted Manuscript

Monitoring the Progress of Catalytic Cracking for Model Compounds in the Mid-Infrared (MIR) 3200-2800 cm⁻¹ Range

S. Lopez-Zamora, A. Alkhlel, H. de Lasa


PII: S0009-2509(18)30590-6

DOI: https://doi.org/10.1016/j.ces.2018.08.021

Reference: CES 14436

To appear in: Chemical Engineering Science

Received Date: 6 June 2018
Revised Date: 1 August 2018
Accepted Date: 7 August 2018

Please cite this article as: S. Lopez-Zamora, A. Alkhlel, H. de Lasa, Monitoring the Progress of Catalytic Cracking for Model Compounds in the Mid-Infrared (MIR) 3200-2800 cm⁻¹ Range, *Chemical Engineering Science* (2018), doi: https://doi.org/10.1016/j.ces.2018.08.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Monitoring the Progress of Catalytic Cracking for Model Compounds in the Mid-Infrared (MIR) 3200-2800 cm⁻¹ Range

S. Lopez-Zamora^a, A. Alkhlel^b, H. de Lasa^b

^aUniversidad Nacional de Colombia - Sede Medellín, Facultad de Minas, Bioprocesos y Flujos Reactivos, Colombia

^bThe University of Western Ontario, Department of Chemical and Biochemical Engineering, Chemical Reactor Engineering Centre, Canada

Abstract

Hydrocarbon species concentrations in the gas phase are of critical importance to elucidate catalytic cracking kinetics and riser/downer fluid dynamics. In this respect, Mid-Infrared (MIR) spectroscopy provides a singular approach to monitor chemical species conversions at various reaction times. In the MIR, the Absorption Cross Section Coefficients and Integrated Absorption Band Intensities can be related to the number of C-H bonds present in the different chemical species. The proposed methodology is based on a Group Contribution Method (GCM), which accounts for the additive contribution of molecular functionalities related to the C-H bonds present in hydrocarbons. This allows absorption spectra predictions in 3200–2800 cm⁻¹ region. This Group Contribution Method can be applied in conjunction with a helium-neon (HeNe) laser, with a 2949.85 cm⁻¹ wavenumber (3.39 um wavelength). The technique is validated using both 1-hexene and 1,3,5-TIPB catalytic cracking data. The importance of the proposed method is shown in the context of using a CREC Riser Simulator, a mini-fluidized laboratory scale unit invented at CREC-UWO (de Lasa, 1991). Hydrocarbon species are MIR monitored in the outer CREC Riser Simulator annulus. The data obtained can be used to extrapolate gas phase hydrocarbon conversions and fluid molar densities in risers and downers. This information can be also used to accurately predict fluid dynamics in FCC catalytic cracking units.

Keywords

Mid-infrared, catalytic cracking, reaction conversion, HeNe laser

Download English Version:

https://daneshyari.com/en/article/11000261

Download Persian Version:

https://daneshyari.com/article/11000261

<u>Daneshyari.com</u>