Accepted Manuscript

Influences of Gd3+ doping modification on the crystal microstructure and electrochemical performance of Li1.20[Mn0.52Ni0.20Co0.08]O2 as cathode for Lithium-ion batteries

POWDER TECHNOLOGY

AMERICAN DESIGNATION OF THE SERVICE AND TECHNOLOGY OF THE ADDRESS OF THE SERVICE AND TECHNOLOGY OF THE ADDRESS OF THE SERVICE AND THE SERVI

Kai Xie, Junchao Qian, Yuyang Zhou, Zhigang Chen, Yun Lin, Feng Chen, Zigang Shen, Dong Li, Yanan Tang, Chenggang Li

PII: S0032-5910(18)30697-1

DOI: doi:10.1016/j.powtec.2018.08.059

Reference: PTEC 13644

To appear in: Powder Technology

Received date: 1 October 2017 Revised date: 15 August 2018 Accepted date: 20 August 2018

Please cite this article as: Kai Xie, Junchao Qian, Yuyang Zhou, Zhigang Chen, Yun Lin, Feng Chen, Zigang Shen, Dong Li, Yanan Tang, Chenggang Li, Influences of Gd3+ doping modification on the crystal microstructure and electrochemical performance of Li1.20[Mn0.52Ni0.20Co0.08]O2 as cathode for Lithium-ion batteries. Ptec (2018), doi:10.1016/j.powtec.2018.08.059

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influences of Gd^{3+} doping modification on the crystal microstructure and electrochemical performance of $Li_{1,20}[Mn_{0.52}Ni_{0.20}Co_{0.08}]O_2$ as cathode for Lithium-ion batteries

- Kai Xie¹, Junchao Qian¹, Yuyang Zhou¹, Zhigang Chen¹, Yun Lin², Feng Chen^{1,*}, Zigang Shen^{3,*}, Dong Li⁴, Yanan Tang³, Chenggang Li³
 - 1. School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology
- 2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
 - 3. College of Physics and Electronic Engineer, Quantum Materials Research Center, Zhengzhou

 Normal University, Zhengzhou, 450044, China
 - 4. Zhengzhou Railway Vocational and Technical College, Zhengzhou, 450052, China

Abstract:

The Li_{1,20}[Mn_{0,52-x}Gd_xNi_{0,20}Co_{0,08}]O₂ (x = 0, 0.01, 0.02, 0.03) cathode materials have been synthesized by using the combination of co-precipitation with high temperature sintering method. The XRD, SEM, TEM and galvanostatic charge-discharge tests were carried out to study the influence of Gd³⁺ doping on the crystal structural, morphology and electrochemical properties of Li_{1,20}[Mn_{0,52}Ni_{0,20}Ni_{0,08}]O₂. The XRD result revealed the Gd³⁺ doping modification could decrease the cation mixing degree. The galvanostatic charge-discharge tests results showed the improved electrochemical properties were obtained through the Gd³⁺ doping modification. With the increase of Gd³⁺ doping content, the capacity retentions enhanced from 88.1% to 90.3% and then decrease to 87.0% after 100 cycles with x = 0.01, 0.02 and 0.03, respectively, while the un-doped sample delivered the capacity retention of 85.1%. The Li_{1,20}[Mn_{0,50}Gd_{0,02}Ni_{0,20}Co_{0,08}]O₂ exhibited a

Download English Version:

https://daneshyari.com/en/article/11000799

Download Persian Version:

https://daneshyari.com/article/11000799

<u>Daneshyari.com</u>