Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavyduty diesel engine

AppliedEnergy

Jun Zhang^a, Victor W. Wong^b, Shijin Shuai^{a,*}, Yu Chen^b, Alexander Sappok^b

^a State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China ^b Sloan Automotive Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

HIGHLIGHTS

- DPF model considering ash effects is built and validated.
- Quantitative analysis on the impact of ash on DPF related engine fuel penalty.
- DPF ash induced fuel penalty typically ranges from 0.02% to 0.42%.
- DPF lifetime fuel penalty can be reduced by ash cleaning interval optimization.
- Fuel saving potential of DPF ash management typically ranges from 0.22% to 0.69%.

ARTICLE INFO

Keywords: Diesel engine PM DPF Ash Fuel penalty Quantitative estimation

ABSTRACT

Fuel saving and emission reduction are big challenges in the development of diesel engines. Diesel particulate filters (DPF) can effectively reduce particulate matter (PM) emissions of diesel engines but negatively affect the engine fuel economy. Some previous studies have been conducted to investigate the effects of DPFs on engine fuel economy, however, nearly all previous studies have neglected the impact of ash accumulation on DPF related fuel penalty. This work aims to quantitatively estimate the impact of ash accumulation on DPF related fuel penalty for a typical modern on-road heavy-duty diesel engine. For this purpose, a one-dimensional full-size DPF model considering ash effects was built and validated in this work, and an engine bench test was conducted to evaluate the effects of exhaust backpressure on engine fuel consumption. An estimation method for the quantitative evaluation of the impact of ash accumulation on DPF related engine fuel penalty was proposed based on the model and experimental data. Subsequently, the impact of ash accumulation on DPF lifetime fuel penalty as well as the potential of fuel saving by DPF ash management for a typical modern on-road heavy-duty diesel engine were quantitatively analyzed. In addition, the effects of engine-out PM emission concentration and DPF maximum soot loading prior to regeneration on the impact of ash accumulation on DPF lifetime fuel penalty and the fuel saving potential of DPF ash management are investigated with the estimation method. The results showed that the DPF ash induced fuel penalty ranged from 0.02% to 0.42% for the typical modern on-road heavy-duty diesel engine studied in this work, and the DPF lifetime fuel penalty could be reduced by optimizing the DPF ash cleaning interval. The fuel saving potential of DPF ash management ranged from 0.22% to 0.69% for all the cases studied in this work, which has the similar magnitude to some specific individual applications such as engine friction reduction, lowering accessory losses, or pumping optimization. Both the DPF ash induced fuel penalty and the fuel saving potential of DPF ash management are increasing with the rise of engine-out PM emission concentration no matter the DPF control strategy is implemented without or with ash correction, while the DPF maximum soot loading prior to regeneration showed little effects on the ash induced fuel penalty and the fuel saving potential of DPF ash management.

* Corresponding author.

E-mail address: sjshuai@tsinghua.edu.cn (S. Shuai).

https://doi.org/10.1016/j.apenergy.2018.08.071

Received 17 April 2018; Received in revised form 7 August 2018; Accepted 15 August 2018 0306-2619/@ 2018 Published by Elsevier Ltd.

Abbreviations p_1 pressure in the inder channel (Pa)BMEP BMEP BFCbrake specific fuel consumption λp_0 pressure loss of the shark clace (Pa)BMEC BSCbrake specific fuel consumption λp_0 pressure loss of the shark clace (Pa)C C C carbon monoxide λp_0 pressure loss or the filter unlet (Pa)C C carbon monoxide λp_0 pressure loss or the filter unlet (Pa)CC C carbon monoxide λp_0 pressure loss or the filter unlet (Pa)CC C carbon divide λp_0 pressure loss or the DPF inlet plug (Pa)DOC DOC C deal oxidation catalyst $\lambda p_{0,0}$ pressure loss or the sap plug and DPF outlet plug pressure loss of the soot cake (Pa)DPF DFC FUCfilter outlet (Pa) pressure loss of the soot cake (Pa)DPF DFC DFC C Furopean transient cycle λp_0 pressure loss of the soot cake (Pa)DPG DO2 O O O NO2 a nitric oxideRTF regeneration fuel penalty (%) regeneration fuel penalty (%) restrict lost of the denominator term of f_{CO} (-) rotal number of reaction rate of reaction (kmO/(M=N))NO2 a oxides of nitrogen O O O O O O Q a oxides of nitrogenRTF regeneration fuel penalty (%) regeneration fuel penalty (%)NO3 a nitrogen dioxideRTF regeneration fuel penalty (%) regeneration fuel penalty (%) r	Nomenc	lature	\overrightarrow{n}	normal vector to the surface of the DPF solid part (-)
BMEP BMEPbrake mean effective pressure brake specific fuel consumption P_{det} A_{fec} A_{fec} A_{fec} A_{fec} A_{fec} pressure loss of the ash cake (Pa) A_{fec} pressure loss of the ash cake (Pa) A_{fec} pressure loss of the ash cake (Pa) A_{fec} pressure loss at the filter identity (Pa) A_{fec} pressure loss at the filter identity (Pa) A_{fec} pressure loss of the solid catalyst A_{fec} pressure loss of the solid catalyst A_{fec} A_{fec} pressure loss of the solid catalyst A_{fec} A_{fec} pressure loss of the solid catalyst A_{fec} A_{fec} A_{fec} A_{fec} A_{fec} A_{fec} A_{fec} 			p_1	pressure in the inlet channel (Pa)
BMFP BSFCbrake mean effective pressure A_{Derr}^{T} pressure loss of the ash calce (Pa)BSFC C carboncarbon A_{Dorr}^{T} DPF overall pressure loss over the effective filter length (Pa)CO C carbon dioxide A_{Pall}^{T} pressure loss over the ash calce (Pa)CO carbon dioxide A_{Pall}^{T} pressure loss over the BTF inlet (Pa)CO carbon dioxide A_{Pall}^{T} pressure loss over the DPF inlet plug (Pa)DOCdisel particulate filter A_{Pall}^{T} pressure loss over the ash the soit caphing and DPF outlet plugDDCdisel particulate filter A_{Pall}^{T} pressure loss of the soot caph plug and DPF outlet plugDPFdisel particulate filter A_{Pall}^{T} pressure loss of the soot caph plug and DPF outlet plugDPFdisel particulate filter A_{Pall}^{T} pressure loss of the soot caph plug and DPF outlet plugNOnitrogen dioxideRuniversal gas constant (LJ/(kmolKi))NOnitrogen dioxideRuniversal gas constant (LJ/(kmolKi))NOoxides of nitrogenRFPcycle averaged regeneration fuel penalty (%)OoxygenRFPcycle averagion regeneration fuel penalty (%)OFMparticulate mater S_1 wet perimeter of the coulet channel (m)SCRselid state S_1 wet perimeter of the coulet channel (m)SVspace velocity S_2 exhaust gas temperature (K)USUnited States T_1 DPF outlet plant (m) $Symbols$ T_2 vet	Abbreviations		p_2	pressure in the outlet channel (Pa)
BSFCbrake specific fuel consumption Δ_{DTPT}^{P} DPF overall pressure dos over the effective filter length (Pa)Ccarbon monoxide Δ_{Ref}^{P} pressure loss over the effective filter length (Pa)CO2carbon monoxide Δ_{Ref}^{P} pressure loss over the effective filter length (Pa)CO2carbon monoxide Δ_{Ref}^{P} pressure loss over the DFF inlet plug (Pa)CO2carbon monoxide Δ_{Ref}^{P} pressure loss over the ash plug and DFF outlet plug.DCCdesel particulate filter Δ_{Ref}^{P} pressure loss of the soot cabe(Pa)DFCEuropean transient cycle Δ_{Ref}^{P} pressure loss of the soot cabe(Pa)ND2nitrice acide R universal gas constant (LA/(kmokK))ND2nitrice acide R universal gas constant (LA/(kmokK))NO2nitrogen dioxide R universal gas constant (LA/(kmokK))NO2nitrogen dioxide R universal gas constant (LA/(kmokK))NO2nitrogen dioxide R veta evaraged regeneration fuel penalty (%)O3original engine manufacturer β reaction rate of reaction i (kmol/(m ³ s))PMparticulate mater s total number of species (-)S solid state S_2 wet perimeter of the outlet channel (m)SVspace velocity T_q exhaust gas temperature (K)UHSCworld harmonized stationary cycle T_q RFP pecearation fuel penalty (%) T_q RFP backpressure fuel penalty (%) T_q <			Pout	pressure at the filter outlet (Pa)
Ccarbon ΔR_{eff}^{eff} pressure loss over the effective filter length (Pa)COcarbon monxide ΔP_{eff} pressure loss at the filter inlet (Pa)COcarbon dioxide ΔP_{eff} pressure loss over the ab plug and DPF outlet plugCOCdiceel oxidation catalyst ΔP_{eff} pressure loss over the ab plug and DPF outlet plugDOCdiceel oxidation catalyst ΔP_{eff} pressure loss over the ab plug and DPF outlet plugDDCdiceel oxidation catalyst ΔP_{eff} pressure loss of the soot cake (Pa)DDFdised particulate filter ΔP_{eff} pressure loss of the soot cake (Pa)DNDnitrice oxide R universal gas constant (kJ/(kmolK))NDnitrice oxide R universal gas constant (kJ/(kmolK))NO2oxygen RFP expendent of face (or laction 1 (kmol/(m ² s))OPoriginal engine manufacturer R universal gas constant (kJ/(kmolK))SNspace velocity S_2 wet perimeter of the duelt channel (m)SVspace velocity S_7 energy source term of the chemical reactions (W)UISUnited States T_6 energy source term of the chemical reactions (W)MIRCworld harmonized stationary cycle T_6 pressure at DPF inlet (K)Afffree outlet channel cross section (m ²) V_1 VAfffree outlet channel cross section (m ²) V_2 VIIISCworld harmonized stationary cycle T_6 pressure loss over the apperature (K)Aff<	BMEP	brake mean effective pressure	Δp_{ac}	pressure loss of the ash cake (Pa)
$ \begin{array}{cccc} CO & \operatorname{carbon monoxide} & \Delta P_{real} & \operatorname{pressure loss at the filter inlet (Pa) \\ CO_2 & \operatorname{carbon dioxide} & \Delta P_{real} & \operatorname{pressure loss over the filter outlet (Pa) \\ DCC & \operatorname{diesel oxidation catalyst} & \Delta P_{pleq,rinl} & \operatorname{pressure loss over the ash plug and DPF outlet plug \\ DDC & Department of Energy & \Delta P_{real} & \operatorname{pressure loss over the ash plug and DPF outlet plug \\ DPF & \operatorname{diesel oxidation catalyst} & \Delta P_{pleq,rinl} & \operatorname{pressure loss over the ash plug and DPF outlet plug \\ DPF & \operatorname{diesel oxide filter} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta $	BSFC	brake specific fuel consumption	Δp_{DPF}	DPF overall pressure drop (Pa)
$ \begin{array}{cccc} CO & \operatorname{carbon monoxide} & \Delta P_{real} & \operatorname{pressure loss at the filter inlet (Pa) \\ CO_2 & \operatorname{carbon dioxide} & \Delta P_{real} & \operatorname{pressure loss over the filter outlet (Pa) \\ DCC & \operatorname{diesel oxidation catalyst} & \Delta P_{pleq,rinl} & \operatorname{pressure loss over the ash plug and DPF outlet plug \\ DDC & Department of Energy & \Delta P_{real} & \operatorname{pressure loss over the ash plug and DPF outlet plug \\ DPF & \operatorname{diesel oxidation catalyst} & \Delta P_{pleq,rinl} & \operatorname{pressure loss over the ash plug and DPF outlet plug \\ DPF & \operatorname{diesel oxide filter} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta P_{de} & \Delta P_{de} & \operatorname{pressure loss of the soot cake (Pa) & \Delta P_{de} & \Delta $	С	carbon		pressure loss over the effective filter length (Pa)
$\begin{array}{cccc} CO_2 & \operatorname{carbon dioxide} & \Delta T_{adv} & \operatorname{pressure loss over the DPF inlet plug (Pa) \\ \Delta P_{plag,out} & \operatorname{pressure loss over the DPF inlet plug (Pa) \\ \Delta P_{plag,out} & \operatorname{pressure loss over the DPF inlet plug (Pa) \\ DOC & \operatorname{diesel particulate filter & \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{pressure loss of the soot cake (Pa) \\ \Delta P_{adv} & \operatorname{presoure cand tech canae (Pa) \\ \Delta P_{adv} & pressure c$	CO	carbon monoxide		pressure loss at the filter inlet (Pa)
cpichannels per square inch $\Delta P_{plog,left}$ pressure loss over the DFF inlet plug (Pa)DOCdiesel oxidation catalyst $\Delta P_{plog,out}$ pressure loss over the ash plug and DFF outlet plugDDEDepartment of Energy ΔP_{de} pressure loss of the soot cake (Pa)DFFdiesel particulate filter ΔP_{de} pressure loss of the soot cake (Pa)NEDCNew European transient cycle q_r reaction order of the denominator term of $f_{CO}(-)$ NOnitric oxidertotal number of reactions (-)NOnitric oxideRmiversal gas constant (kJ/(kmol·K))NOoxides of nitrogenREFPregeneration fuel penalty (%)O2oxygen RFP reaction order of the centron (L) (m ³ sy)PMparticulate mater s total number of species (-)Ssolid state s_1 wet perimeter of the culte channel (m)SVspace velocity S_r eeraged regeneration fuel penalty (%)USUnited States T_g exclusing time (s)SymbolsT g_g pressure loss exclion (m ²) T_g A1free inlet channel cross section (m ²) T_g pergeneration time (s)A2nardee of the solid part of the DFP (m ²) V_g DPF sodiaryBFPcycle averaged backpressure fuel penalty (%) V_g velocity in the outlet channel (m/s)Symbols T_g exclassing (M/GRK)) V_g DPF orderA1free inlet channel cross section (m ²) T_g exclassing (M/GR	CO_2	carbon dioxide		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		channels per square inch		pressure loss over the DPF inlet plug (Pa)
DOEDepartment of Energy ΔP_{ex} pressure loss of the soot cake (Pa)DPFdiesel particulate filter ΔP_{dx} pressure loss of the soot cake (Pa)PRCEuropean transient cycle ΔP_{dx} pressure loss of the soot cake (Pa)NEDCNew European Training (Ycle q_f reaction order of the denominator term of $f_{CO}(-)$ NOnitric oxide r total number of reactions (-)NOnitric oxide r total number of reaction fuel penalty (%)O2oxygen RFP cycle averaged regeneration fuel penalty (%)Solid state s total number of species (-)Ssolid state s_1 wet perimeter of the outlet channel (m)SVspace velocity S_r energy source term of the chemical reactions (W)USUnited States T_r exhaust gas temperature (K)WHSCworld harmonized stationary cycle $I_{baaling}$ DPF loading time (s) r_{rest} surface of the solid part of the DPF (m ²) V_1 Velocity in the inlet channel (m/s) FP backpressure fuel penalty (%) V_2 velocity in the outlet channel (m/s) FP backpressure fuel penalty (%) V_2 Velocity in the outlet channel (m/s) F_r specific heat of the DPF (m ²) V_1 ve	-			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-
NEDCNew European Driving Cycle q_f reaction order of the denominator term of $f_{CO}(-)$ NOnitric oxidertotal number of reactions (-)NOnitric oxideRuniversal gas constant (L)(kmolK))NOxoxides of nitrogenREPregeneration fuel penalty (%)OLMoriginal engine manufacturerrrPMparticulate materstotal number of species (-)Ssolid stateS1wet perimeter of the other channel (m)SVspace velocityS7energy source term of the chemical reactions (W)USUnited StatesTsexhaust gas temperature (K)WHSCworld harmonized stationary cycle $l_{tooding}$ DPF loading time (s)SymbolsTree outlet channel cross section (m ²)VDPF loading time (s)BFPbackpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s)BFPbackpressure fuel penalty (%) v_2 velocity in the inlet channel (m/s)BFPbackpressure fuel penalty (%) v_1 velocity in the outlet channel (m/s) q_f cred the exhaust gas (kmol/m ³) v_i the stoichiometric coefficient of the species k in react c_0_2 oxygen oncentration in the exhaust gas (kmol/m ³) v_{id} the stoichiometric coefficient of the species k in react $(-)$ wile dividing distance (km) v_{id} velocity at the filter outlet (m/s) q_f activation energy of the denominator term of f_{CO} (kJ/ v_{id} q_i activation energy		-		
NOnitric oxidertotal number of reactions (-)NO2nitrogen dioxideRuniversal gas constant (kJ/(kmol·K))NO4oxides of nitrogenRFPregeneration fuel penalty (%)O2oxygenRFPcycle averaged regeneration fuel penalty (%)OEMoriginal engine manufacturerrrPMparticulate materstotal number of species (-)Ssolid stateSrwet perimeter of the culte channel (m)SCRselective catalytic reductionSrenergy source term of the chemical reactions (W)USUnited StatesTgexhaust gas temperature (K)WHSCworld harmonized stationary cyclelocalingDPF loading time (s)LoggenerationSrregeneration time (s)SymbolsTgDPF solid temperature (K)A1free inlet channel cross section (m ²)VDPF rogeneration time (s)A2free outlet channel cross section (m ²)v1velocity in the outlet channel (m/s)BFPbackpressure fuel penalty (%)v2velocity in the outlet channel (m/s)BFPbackpressure fuel penalty (%)v1velocity in the outlet channel (m/s)Goxygen concentration in the exhaust gas (kJ/(kg-K))v1velocity at the filter inlet (m/s)Goxygen concentration in the exhaust gas (kJ/(kg-K))v2velocity at the filter inlet (m/s)Goxygen concentration in the exhaust gas (kJ/(kg-K))v2velocity at the filter outlet (m/s)Goxygen concentration in the e				•
NO2 notices of nitrogennitrogen dioxideR R RFPuniversal gas constant (kJ/(kmol·K)) RFP regeneration fuel penalty (%)NO2 or oxygenoxides of nitrogenRFP Regeneration fuel penalty (%)RFP regeneration fuel penalty (%)OEM OEM original engine manufacturer \dot{n}_i reaction rate of reaction i (kmol/(m³-s))RFP regeneration fuel penalty (%)S Solid states s total number of species (-)S s total number of species (-)S S Solid states s total number of species (-)SCR Selective catalytic reductionS2 s wet perimeter of the outlet channel (m)SV Syne velocityS7 s energy source term of the chemical reactions (W)US UIS United StatesTg s exhaust gas temperature (K)WHSC WHSCworld harmonized stationary cycleLocating LocatingDPF solid temperature (K) T_T the difference between the target temperature and actual temperature at DPF inlet (K)A1 A2 Free outlet channel cross section (m²)V T_T A2 BFFP cycle averaged backpressure fuel penalty (%) v_1 v_2 velocity in the outlet channel (m/s)BFFP cycle averaged backpressure fuel penalty (%) v_1 v_2 velocity in the outlet channel (m/s)BFFP cycle averaged backpressure fuel penalty (%) v_2 v_2 velocity in the outlet channel (m/s)G cycle averaged backpressure fuel penalty (%) v_2 v_2 velocity in the outlet channel (m/s)G A1 di diameter of the DFF solid phase (kJ/(kgK)) v_{kl} v_{ad} G <br< td=""><td></td><td></td><td></td><td></td></br<>				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-		-
OEMoriginal engine manufacturer \dot{r}_i reaction rate of reaction $i (kmol/(m^3 s))$ PMparticulate mater s total number of species (-)Ssolid state S_1 wet perimeter of the free inlet channel (m)SCRselective catalytic reduction S_2 wet perimeter of the outlet channel (m)SVspace velocity S_r energy source term of the chemical reactions (W)USUnited States T_g exhaust gas temperature (K)WHSCworld harmonized stationary cycle I_{boding} time (s)Symbols T_r DPF loading time (s) A_i free inlet channel cross section (m ²) V A_i surface of the solid part of the DPF (m ²) v_1 A_i surface of the solid part of the DPF (m ²) v_1 BFP cycle averaged backpressure fuel penalty (%) v_i BFP cycle averaged backpressure fuel penalty (%) v_i $c_{r,s}$ specific heat of the exhaust gas (kmol/m ³) $(-)$ $c_{r,s}$ specific heat of the DPF solid phase (kJ/(kgK)) $v_{i,k}$ d_i diameter of the DPF solid phase (kJ/(kgK)) v_{out} velocity at the filter inlet (m/s) k_i activation energy of reaction $i (kJ/kmol)$ v_{wil velocity in the outlet (m/s) F_i friction coefficient in the inlet channel (-) w_{w_k} mass fraction of the species k (kg/kg) F_i friction coefficient in the inlet channel (-) w_{w_k} mass fraction of the species k (kg/kg) F_i friction coeffi				•
PMparticulate materstotal number of species (-)Ssolid stateS1wet perimeter of the free inlet channel (m)SCRselective catalytic reductionS2wet perimeter of the outlet channel (m)SVspace velocityS2wet perimeter of the outlet channel (m)USUnited StatesTgexhaust gas temperature (K)WHSCworld harmonized stationary cycle $l_{ounting}$ DPF loading time (s)SymbolsTgDPF solid temperature (K)A1free inlet channel cross section (m ²)VDPF volume (m ³)A2free outlet channel cross section (m ²)VDPF volume (m ³)A3surface of the solid part of the DPF (m ²)V1velocity in the inlet channel (m/s)BFPbackpressure fuel penalty (%)V2velocity in the outlet channel (m/s)BFPbackpressure fuel penalty (%)V2velocity in the outlet channel (m/s)Gr _{p,s} specific heat of the eXhaust gas (kJ/(kgK))V1,the stoichiometric coefficient of the species k in reactGr _{p,s} specific heat of the DPF solid phase (kJ/(kgK))V1,welocity at the filter outlet (m/s)d1diameter of the DPF solid phase (kJ/(kgK))V4,solid volume part of the DPF (m ³)f1friction coefficient in the intel channel (-)W2,wall velocity in the intel channel (m/s)F2friction coefficient in the intel channel (-)W2,W2Wall velocity (m/s)W4,wall velocity (m/s)F3friction coefficient in the intel cha				
Ssolid state S_1 wet perimeter of the free inlet channel (m)SCRselective catalytic reduction S_2 wet perimeter of the outlet channel (m)SVspace velocity S_r energy source term of the chemical reactions (W)USUnited States T_g exhaust gas temperature (K)WHSCworld harmonized stationary cycle $l_{loading}$ DPF loading time (s) $T_{regeneration}$ DPF solid temperature (K) A_1 free inlet channel cross section (m ²) X DPF solid temperature (K) A_2 free outlet channel cross section (m ²) V DPF volume (m ³) A_i surface of the solid part of the DPF (m ²) v_1 velocity in the inlet channel (m/s) BFP backpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s) BFP backpressure fuel penalty (%) v_1 the stoichiometric coefficient of the species k in react c_p specific heat of the exhaust gas (knol/m ³)(-)(-) c_p specific heat of the DPF solid phase (kJ/(kgK)) v_{kk} the stoichiometric coefficient of the species k in react c_p specific heat of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) d_1 diameter of the DPF inlet/outlet channel (-) v_{wl} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel (-) w_{wl} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the inlet channel (-) w_{wl} wall velocity in				
SCRselective catalytic reduction S_2 wet perimeter of the outlet channel (m)SVspace velocity S_r energy source term of the chemical reactions (W)USUnited States T_g exhaust gas temperature (K)WHSCworld harmonized stationary cycle $I_{loading}$ DPF loading time (s)Symbols T_g exhaust gas temperature (K)A1free inlet channel cross section (m ²) T_s DPF solid temperature (K)A2free outlet channel cross section (m ²) V DPF volume (m ³)A3surface of the solid part of the DPF (m ²) V_1 velocity in the inlet channel (m/s)BFPbackpressure fuel penalty (%) V_2 velocity in the outlet channel (m/s)BFPcycle averaged backpressure fuel penalty (%) V_1 the stoichiometric coefficient of the species k in react C_{O_2} oxygen concentration in the exhaust gas (kmol/m ³) $(-)$ $(-)$ C_p specific heat of the DPF solid phase (k//(kg·K)) V_{1k} the stoichiometric coefficient of the species k in react $C_{r,s}$ specific heat of the DPF inlet/outlet channel (m) V_{ud} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) V_{ud} velocity at the filter outlet (m/s) E_f activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m ³) F_1 friction coefficient in the inlet channel (-) V_{u2} wall velocity in the inlet channel (m/s) F_2 friction coefficient in		1		
SVspace velocity S_r energy source term of the chemical reactions (W)USUnited States T_g exhaust gas temperature (K)WHSCworld harmonized stationary cycle $t_{loading}$ DPF loading time (s)Symbols T_g DPF solid temperature (K)A1free inlet channel cross section (m ²) T_s DPF solid temperature at DPF inlet (K)A2free outlet channel cross section (m ²) V DPF volume (m ³)A3surface of the solid part of the DPF (m ²) v_1 velocity in the inlet channel (m/s)BFPbackpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s)BFPbackpressure fuel penalty (%) v_1 velocity at the filter inlet (m/s) G_{r_s} specific heat of the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react G_{r_s} specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react G_{r_s} activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m ³) k friction coefficient in the inlet channel (-) v_{w} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the outlet channel (-) v_{w_s} mass fraction of the species k (kg/kg) F_c engine fuel consumption rate (kg/h) v_{w_s} mass fraction of the species k (kg/kg) F_1 friction coefficient in the outlet channel (-) v_{w_s} mole fraction (mol/mol) F_2	S	solid state		•
USUnited States T_g exhaust gas temperature (K)WHSCworld harmonized stationary cycle $I_{loading}$ DPF loading time (s)Symbols T_g DPF solid temperature (K)Symbols T_g DPF solid temperature (K)A1free inlet channel cross section (m ²) ΔT A2free outlet channel cross section (m ²) V A3surface of the solid part of the DPF (m ²) V_1 Velocity in the inlet channel (m/s) V_2 BFPbackpressure fuel penalty (%) v_2 Vi, dthe stoichiometric coefficient of the species k in react (-) C_{02} oxygen concentration in the exhaust gas (kmol/m ³) $(-)$ $C_{p,s}$ specific heat of the DPF solid phase (kJ/(kgK)) $v_{i,k}$ d_1 diameter of the DPF solid phase (kJ/(kgK)) $v_{i,k}$ d_1 diameter of the DPF inlet/outlet channel (m) v_{out} $Kmol$) v_{w1} velocity in the inlet channel (m/s) E_f activation energy of reaction i (kJ/kmol) v_{w1} F_1 friction coefficient in the inlet channel (-) v_{w2} F_2 friction coefficient in the inlet channel (-) v_{w2} F_2 regine fuel consumption rate (kg/h) y_g F_2 geometry surface area for DPF inlet and outlet channels $Greek$ letters (m^2/m^3) (m^2/m^3) (m^2/m^3)	SCR	selective catalytic reduction		
WHSCworld harmonized stationary cycle $t_{loading}$ DPF loading time (s)Symbols T_s DPF regenerationDPF regenerationSymbols T_s DPF solid temperature (K)A1free inlet channel cross section (m ²) T_s DPF volume (m ³)A2free outlet channel cross section (m ²) V DPF volume (m ³)A3surface of the solid part of the DPF (m ²) v_1 velocity in the inlet channel (m/s)BFPbackpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s)BFPcycle averaged backpressure fuel penalty (%) $v_{i,j}$ the stoichiometric coefficient of the species k in react C_{02} oxygen concentration in the exhaust gas (kmol/m ³) $(-)$ $(-)$ c_p , specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,l}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) v_{inl} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter inlet (m/s) E_f activation energy of reaction $i(kJ/kmol)$ v_{w1} wall velocity (m/s) E_i activation energy of reaction $i(kJ/kmol)$ v_{w2} wall velocity in the outlet channel (m/s) F_1 friction coefficient in the inlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coeffici	SV	space velocity	S_r	energy source term of the chemical reactions (W)
WHSCworld harmonized stationary cycle $t_{loading}$ DPF loading time (s)Symbols T_s DPF regenerationDPF regenerationSymbols T_s DPF solid temperature (K)A1free inlet channel cross section (m ²) T_s DPF volume (m ³)A2free outlet channel cross section (m ²) V DPF volume (m ³)A3surface of the solid part of the DPF (m ²) v_1 velocity in the inlet channel (m/s)BFPbackpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s)BFPcycle averaged backpressure fuel penalty (%) $v_{i,j}$ the stoichiometric coefficient of the species k in react C_{02} oxygen concentration in the exhaust gas (kmol/m ³) $(-)$ $(-)$ c_p , specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,l}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) v_{inl} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter inlet (m/s) E_f activation energy of reaction $i(kJ/kmol)$ v_{w1} wall velocity (m/s) E_i activation energy of reaction $i(kJ/kmol)$ v_{w2} wall velocity in the outlet channel (m/s) F_1 friction coefficient in the inlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coeffici	US	United States	T_{g}	exhaust gas temperature (K)
Symbols $t_{regeneration}$ DPF regeneration time (s) T_s DPF solid temperature (K) A_1 free inlet channel cross section (m ²) A_2 free outlet channel cross section (m ²) A_2 free outlet channel cross section (m ²) A_s surface of the solid part of the DPF (m ²) A_s surface of the solid part of the DPF (m ²) BFP backpressure fuel penalty (%) V_2 velocity in the inlet channel (m/s) BFP cycle averaged backpressure fuel penalty (%) v_1 velocity in the outlet channel (m/s) BFP specific heat of the exhaust gas (kmol/m ³) c_0_2 oxygen concentration in the exhaust gas (kmol/m ³) $c_p_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) d_1 diameter of the DPF solid phase (kJ/(kg·K)) d_1 diameter of the DPF inlet/outlet channel (m) v_{unl} velocity at the filter inlet (m/s) k_mol v_{unl} k_{unl} v_{unl} k_{unl} v_{unl}	WHSC	world harmonized stationary cycle		DPF loading time (s)
Symbols T_s DPF solid temperature (K) A_1 free inlet channel cross section (m^2) ΔT the difference between the target temperature and actual temperature at DPF inlet (K) A_2 free outlet channel cross section (m^2) V DPF volume (m^3) A_s surface of the solid part of the DPF (m^2) v_1 velocity in the inlet channel (m/s) BFP backpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s) BFP cycle averaged backpressure fuel penalty (%) $v_{i,j}$ the stoichiometric coefficient of the species k in react c_{O_2} oxygen concentration in the exhaust gas (kmol/m ³)(-) c_p specific heat of the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react c_{O_2} oxygen concentration in the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of reaction i (kJ/kmol) v_{w1} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the outlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ <t< td=""><td></td><td></td><td></td><td>DPF regeneration time (s)</td></t<>				DPF regeneration time (s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Symbols			
A_1 free inlet channel cross section (m^2) actual temperature at DPF inlet (K) A_2 free outlet channel cross section (m^2) V DPF volume (m^3) A_s surface of the solid part of the DPF (m^2) v_1 velocity in the inlet channel (m/s) BFP backpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s) BFP cycle averaged backpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s) C_{O2} oxygen concentration in the exhaust gas (kmol/m ³)(-) c_p specific heat of the exhaust gas (kJ/(kgK)) $(-)$ c_p ,specific heat of the DPF solid phase (kJ/(kgK)) $(-)$ d vehicle driving distance (km) v_{inl} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of reaction i (kJ/kmol) v_{w1} wall velocity (m/s) F_1 friction coefficient in the inlet channel (-) w_w2 wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) F_2 engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek \ letters$ GSA geometry surface area for DPF inlet and outlet channels $Greek \ letters$	5			
A_2 free outlet channel cross section (m^2) V DPF volume (m^3) A_s surface of the solid part of the DPF (m^2) v_1 velocity in the inlet channel (m/s) BFP backpressure fuel penalty $(\%)$ v_2 velocity in the outlet channel (m/s) BFP cycle averaged backpressure fuel penalty $(\%)$ v_2 velocity in the outlet channel (m/s) C_{O_2} oxygen concentration in the exhaust gas $(kmol/m^3)$ $(-)$ c_p specific heat of the exhaust gas $(kJ/(kg \cdot K))$ $v_{i,k}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase $(kJ/(kg \cdot K))$ $v_{i,k}$ the stoichiometric coefficient of the species k in react d vehicle driving distance (km) v_{inl} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of the denominator term of f_{CO} $(kJ/V_s$ solid volume part of the DPF (m^3) $kmol)$ v_{wl} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel $(-)$ w_{w_2} w_{w_2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel $(-)$ w_{w_2} w_{w_2} geometry surface area for DPF inlet and outlet channels $Greek letters$ (m^2/m^3) (m^2/m^3) (m/s)	A_1	free inlet channel cross section (m^2)		
A_s surface of the solid part of the DPF (m ²) v_1 velocity in the inlet channel (m/s) BFP backpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s) BFP cycle averaged backpressure fuel penalty (%) v_i the stoichiometric coefficient of the species k in react c_{O_2} oxygen concentration in the exhaust gas (kmol/m ³) $(-)$ c_p specific heat of the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m ³) $kmol$) w_w wall velocity in the inlet channel (m/s) w_w wall velocity in the outlet channel (m/s) F_1 friction coefficient in the inlet channel (-) w_w_2 wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) F_2 engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek$ letters (m^2/m^3) temperature dependence factor (-) $Greek$ letters			V	
BFPbackpressure fuel penalty (%) v_2 velocity in the outlet channel (m/s)BFPcycle averaged backpressure fuel penalty (%) $v_{i,j}$ the stoichiometric coefficient of the species k in react c_{O_2} oxygen concentration in the exhaust gas (kmol/m³) $(-)$ c_p specific heat of the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m³) $kmol$) v_w wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek letters$ (m^2/m^3) (m^2/m^3) (m^2/m^3)		2		
\overline{BFP} cycle averaged backpressure fuel penalty (%) $v_{i,j}$ the stoichiometric coefficient of the species k in react c_{O2} oxygen concentration in the exhaust gas (kmol/m³) $(-)$ c_p specific heat of the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in react d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) $kmol$ activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m³) $kmol$ v_{w1} wall velocity (m/s) E_i activation energy of reaction i (kJ/kmol) v_{w1} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction (mol/mol) f_{CO} temperature dependence factor (-) $geometry$ surface area for DPF inlet and outlet channels $Greek$ letters (m^2/m^3) (m^2/m^3) (m^2/m^3) (m^2/m^3) (m^2/m^3)				
c_{O_2} oxygen concentration in the exhaust gas (kmol/m³)(-) c_p specific heat of the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in reac $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in reac d vehicle driving distance (km) v_{inl} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m³) $kmol$) w_{w} wall velocity (m/s) E_i activation energy of reaction i (kJ/kmol) v_{w1} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) FC engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-)Greek letters (m^2/m^3) the species for DPF inlet and outlet channelsGreek letters				-
c_p specific heat of the exhaust gas (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in reac $c_{p,s}$ specific heat of the DPF solid phase (kJ/(kg·K)) $v_{i,k}$ the stoichiometric coefficient of the species k in reac d vehicle driving distance (km) v_{inl} velocity at the filter inlet (m/s) d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m ³) $kmol$ w_{wl} wall velocity (m/s) E_i activation energy of reaction i (kJ/kmol) v_{w1} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) FC engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek$ letters (m^2/m^3) the head back termsfor the head back terms			$v_{i,j}$	*
$ \begin{array}{lll} c_{p,s} \\ c_{p,s} \\ c_{p,s} \\ d_{p,s} \\ c_{p,s} \\ d_{p,s} \\ c_{p,s} \\ c_{p,s$				
			$v_{i,k}$	
d_1 diameter of the DPF inlet/outlet channel (m) v_{out} velocity at the filter outlet (m/s) E_f activation energy of the denominator term of f_{CO} (kJ/ V_s solid volume part of the DPF (m ³) $kmol$) $wmol$ v_{wu} wall velocity (m/s) E_i activation energy of reaction i (kJ/kmol) v_{w1} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel (-) v_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) w_{w2} mass fraction of the species k (kg/kg) FC engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek$ letters (m^2/m^3) friction coefficient in the outlet channel for the temperature dependence factor (-) $Greek$ letters				
E_f activation energy of the denominator term of f_{CO} (kJ/ kmol) V_s solid volume part of the DPF (m³) wall velocity (m/s) E_i activation energy of reaction i (kJ/kmol) v_w wall velocity (m/s) F_1 friction coefficient in the inlet channel (-) v_{w2} wall velocity in the inlet channel (m/s) F_2 friction coefficient in the outlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_C engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek$ letters (m^2/m^3) temperature dependence factor (-) $Greek$ letters			v_{inl}	
kmol) v_w wall velocity (m/s) E_i activation energy of reaction i (kJ/kmol) v_w wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel (-) v_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) w_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) FC engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek$ letters GSA geometry surface area for DPF inlet and outlet channels $Greek$ letters				
E_i activation energy of reaction i (kJ/kmol) v_{w1} wall velocity in the inlet channel (m/s) F_1 friction coefficient in the inlet channel (-) v_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) FC engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek$ letters (m^2/m^3) freek letters m^2/m^3	E_{f}		V_s	•
F_1 friction coefficient in the inlet channel (-) v_{w2} wall velocity in the outlet channel (m/s) F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg) FC engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) $Greek$ letters m^2/m^3 mole fraction (mol/mol)			v_w	wall velocity (m/s)
F_2 friction coefficient in the outlet channel (-) $w_{g,k}$ mass fraction of the species k (kg/kg)FCengine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-)Greek lettersGSAgeometry surface area for DPF inlet and outlet channels (m ² /m ³)Greek letters	E_i	activation energy of reaction i (kJ/kmol)	v_{w1}	wall velocity in the inlet channel (m/s)
FC engine fuel consumption rate (kg/h) y_g mole fraction (mol/mol) f_{CO} temperature dependence factor (-) geometry surface area for DPF inlet and outlet channels Greek letters (m^2/m^3) mole fraction (mol/mol) fraction (mol/mol)	F_1	friction coefficient in the inlet channel (-)	v_{w2}	wall velocity in the outlet channel (m/s)
f_{CO} temperature dependence factor (-) GSA geometry surface area for DPF inlet and outlet channels Greek letters (m^2/m^3)	F_2		$w_{g,k}$	mass fraction of the species k (kg/kg)
f_{CO} temperature dependence factor (-) GSA geometry surface area for DPF inlet and outlet channels Greek letters (m^2/m^3)	FC	engine fuel consumption rate (kg/h)		mole fraction (mol/mol)
GSA geometry surface area for DPF inlet and outlet channels Greek letters (m^2/m^3)	f_{CO}	temperature dependence factor (-)	8	
(m^2/m^3)		geometry surface area for DPF inlet and outlet channels	Greek lett	ers
a second s				
H_u lower heating value of the diesel fuel (kJ/kg) α ash content of the lubricant oil (%)	H_{ν}	lower heating value of the diesel fuel (kJ/kg)	α	ash content of the lubricant oil (%)
K anisotropic heat conduction matrix (W/(m·K)) δ_{ac} height of the ash cake (m)			δ_{ac}	
k_{ac} permeability of the ash cake (m ²) δ_{sc} height of the soot cake (m)		-		-
k_{ac} exponential factor of the denominator term of f_{CO} (–) δ_{sd} height of the soot dente (m)				-
k_f gas-solid heat transfer coefficient (W/(m ² ·K)) δ_w thickness of the filter wall (m)				
k_i Arrhenius frequency factor of reaction <i>i</i> (variable) μ gas viscosity (Pa·s)				
1 in the set of (1) in the set (1)				
l length of the DDE inlet /outlet nive (m)				
in anging orthoust mass flow rate (ligh)				
$\dot{m}_{exhaust}$ engine exhaust mass flow rate (kg/h) φ DPF channel shape factor (-)				-
\dot{m}_{fuel} fuel injection rate (kg/h) ζ_{inl} pressure loss coefficient at the filter inlet (-)	•			
M_j molar mass of the species <i>j</i> (kg/kmol) ζ_{out} pressure loss coefficient at the filter outlet (–) M_k molar mass of the species <i>k</i> (kg/kmol)	5		Sout	pressure loss coefficient at the filter outlet (-)
M_k molar mass of the species k (kg/kmol)	IVIK	motar mass of the species k (kg/kmol)		

Download English Version:

https://daneshyari.com/en/article/11000846

Download Persian Version:

https://daneshyari.com/article/11000846

Daneshyari.com