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H I G H L I G H T S

• The chaotic characteristic of photovoltaic (PV) output from a microgrid is verified.

• A Maximum Lyapunov Exponent method for PV forecasting is proposed.

• The feature of the method is nonlinear, very short-term and lower-experimental-cost.

• The method is validated for minute-ahead PV output forecasting.

• The performance is validated using a demonstration PV system in southeastern China.
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A B S T R A C T

Photovoltaic (PV) power generation varies randomly and intermittently with respect to the weather. For a
microgrid with PV sources, this fluctuation not only affects the necessary configuration of the energy-storage
capacity chosen in microgrid planning and design but also influences the microgrid operation. Consequently,
accurately forecasting the PV output is crucial. For the operation of a PV-dominated microgrid, a new method for
very short-term (VST) forecasting based on the maximum Lyapunov exponent (MLE) is proposed. First, historical
power-generation data are divided into three weather conditions: sunny, cloudy, and rainy days. Then, a PV
output series for the different weather conditions is constructed, and the chaotic characteristic is verified by
reconstructing an attractor graph and calculating the MLE. Finally, using the MLE method, the PV generation
under different historical weather conditions is forecasted. The raw output time series are measured data from a
demonstration system installed on the rooftop of Building 6 at Hangzhou Dianzi University, China. The fore-
casting accuracy is evaluated using several statistical metrics and compared with that of forecasts obtained via
the widely used auto-regression approach. Comparing the forecasts indicates that the MLE-based method is
statistically but not universally more accurate for VST forecasting.

0. Introduction

Renewable energy resources should replace traditional power gen-
eration because of their desirable characteristics of sustainability and
low pollution. Considering this criterion, photovoltaic (PV) electricity
generation is an excellent renewable energy source, but its output
varies significantly depending on the weather, especially in cloudy
climates such as that of southeastern China. PV power is both uncertain
and random. On one hand, the connection of large-scale PV systems to
the utility grid might affect the safety and reliability, raising the barrier
to its large-scale utilization. On the other hand, if demand is served
locally by PV within a microgrid, even at low solar penetration (i.e., the
solar generation percentage in total power generation for a district),

stability problems can arise for microgrid operation; e.g., it might be
difficult to maintain the voltage and frequency in an islanded PV-
dominated inertia-less microgrid. Using battery banks large enough to
smooth inevitable demand–supply imbalances is the usual strategy, but
it significantly increases the capital costs and can lead to pollution from
battery disposal. All of these effects have economic implications for
future microgrid viability. Accurate forecasting of the PV power can
provide important input to microgrid power dispatching and operation
by facilitating adjustments to the operational plan in time to optimize
the performance and minimize the cost [1,2]. In addition to the benefit
to the operation of utility grids and microgrids, solar forecasting has
been proven to be helpful in other fields, such as marine power supply
systems [3]. Because the randomness and variability of the PV output
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can be mitigated by accurate forecasting and its full use is encouraged
by policy, solar forecasting has received considerable attention in the
literature.

The long history of research on forecasting PV generation has been
fruitful. Fundamentally, the technology can be divided into two cate-
gories: physical modeling and data-driven methods. The physical-
modeling approach focuses on studying equivalent circuits of PV cells
to forecast the power output based on predicted weather input para-
meters, such as irradiation and temperature [4]. These models can re-
quire many circuit parameters, such as series resistance, shunt re-
sistance, diode reverse saturation current, photocurrent, diode impact
factor, and various temperature coefficients. Acquiring some of these
data sets requires complex calculations, while others can be provided
by manufacturers. For example, [5] used a physical model requiring a
large amount of raw sampled data to estimate the PV system parameters
used in a simulation. Consequently, physical modeling has limited real-
world application, and data-driven methods are used more often in
practice. Further, rapid progress in data processing, artificial in-
telligence, and machine learning are giving data-driven methods a
stronger advantage, and they are now widely used in various fore-
casting applications [6].

Data-driven methods can be subdivided into linear and nonlinear
models, from a mathematical viewpoint. The popular linear models
applied in PV forecasting are auto-regression (AR), auto-regressive ex-
trapolation [7], and auto-regressive moving-average extrapolation
(ARMAX) [8]. These models are simple in structure but inflexible [9],
and the actual PV output is absolutely nonlinear; thus, many re-
searchers focus on studying nonlinear forecasting. Among the nonlinear
models, the artificial neural network [10], the support vector machine
[11], and their enhanced counterparts combined with other composite
methods are widely used [12,13]. In a previous study [14], eleven
prediction models were compared, including linear methods, nonlinear
methods, and ensemble algorithms. Compared with the linear methods,
the nonlinear and ensemble approaches significantly improved the
precision.

Data-driven forecasting methods can also be subdivided into three
models according to the raw data used: time series [15], numerical
weather prediction (NWP) [16], and sky imaging [17]. Time-series
models are based only on historical PV generation data. No other input
data are necessary; thus, there are no experimental requirements.
Linear models such as AR and auto-regressive moving-average (ARMA)
and their extended versions are typically used for time series, while
nonlinear time-series models are not common. NWP is commonly used
with control inputs [7]. With the progress of image processing, pre-
dicting the PV output via sky imaging is attracting attention from re-
searchers. This method takes ground-based or satellite cloud images
and forecasts their movement and shading, thereby predicting surface
insolation [18,19]. Which model should be used depends heavily on the

experimental conditions and available information. For example, NWP
methods need considerable weather data,

while sky imaging requires satellite cloud pictures or all-sky ima-
ging equipment, both of which are expensive.

With regard to the time horizon, PV forecasts can be categorized as
long-term, short-term, or very short-term (VST), but researchers have
very different ideas about the time cutoffs. For example, in [20] and
[21], the VST horizon was defined as several minutes to several hours,
the short-term horizon ranged from a few hours to 3 d, and the long-
term horizon ranged from a week to a year. In [22], short-term was
defined as 5–8min. Regardless of how the forecast periods are defined,
their roles are similar. The VST forecast aims at intra-day real-time
control and power-market participation; the short-term forecast is used
for day-ahead economic dispatch; and the long-term forecast focuses on
equipment maintenance scheduling, market participation, etc. [23]. For
these three time domains, researchers have addressed current problems
in short-term forecasting [24,25]. For example, in [26], a model-based
predictive control approach was applied with short-term direct normal
irradiance forecasting for optimal scheduling in concentrating solar
power plants.

A shorter horizon means that the forecast is more conducive to an
emergency response, making VST PV forecasting particularly crucial.
VST PV behavior is mainly affected by cloud movement; thus, this
forecast mainly uses the aforementioned NWP, sky images, sensor ar-
rays plus random-sequence, time series, etc. [27]. These methods make
it possible to achieve a precise forecast, but they are limited by the
measurement equipment available. For example, cloud imaging of the
entire sky requires a fish-eye lens mounted on a whole-sky camera with
an unrestricted panoramic view of 180° in every direction. These de-
vices are not only expensive but also limited in space–time resolution,
and there are shortcomings in the PV forecast.

Although there are many methods for forecasting, it is difficult to
say which one is better, given different time scales, geographies, PV
capacities, and experimental conditions [28,29]. This paper sum-
marizes the advantages and disadvantages of the aforementioned AR
forecast methods compared with a proposed VST forecast method based
on the maximum Lyapunov exponent (MLE) approach, which analyzes
the chaotic characteristic of an actual evolving PV generation time
series.

While the traditional AR method has good linear forecast perfor-
mance, MLE—being a nonlinear time series analysis method—provides
greater accuracy. Given the sensitivity of chaotic systems, MLE does not
directly construct a mathematical model linking the output to its in-
fluencing factors; instead, it describes the evolution of the dynamic
system according to the exponential separation characteristic of the
actual chaotic data, yielding a nonlinear time series VST forecast. The
approach does not require complex experiment or expensive equip-
ment, and no procedures are needed to estimate parameters for initial

Nomenclature

m embedding dimension
d correlation dimension
τ delay time
x{ }t time-series data set

n length of time series
X{ }s phase point set in reconstructed phase space

N number of phase points in reconstructed phase space
Xs0 initial phase point

′Xs 0 adjacent phase point
L L,0 1 Euclidian distance
ε predetermined threshold

′L 0 Euclidian distance exceeding ε
sΔ time step

M total steps for calculating λmax
λmax maximum Lyapunov exponent
P average period
T forecast horizon
F k( ) kth frequency component in FFT
FFT (·) fast Fourier transform
MAX (·) maximum value
Round (·) rounded value
K frequency of maximum frequency components
EMAPE mean absolute percentage error
ErRMSE relative root-mean-square error
EMBE mean bias error
W forecasted PV power generation
∼W measured PV power generation
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