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1. Introduction

Structural members of periodically distributed physical prop-
erties represent a special group of inhomogeneous structures.
On the local level they are formed as usually piecewise
continuous structures by joining together identical elements
in organized manner. On the global level, such structures
exhibit some effective properties and, especially in cases of 2-D
or 3-D elements, can be treated as anisotropic or orthotropic.

Depending on the level and scope of investigation, various
properties of periodic structures are revealed and emphasized.
Considering static problems, such as bending or stability
issues, densely ribbed plate and shell panels exhibit favourable
weight to stiffness ratio [2,11], which confirms the advantages
of the use of periodically arranged stiffeners in lightweight
structures. On the other hand, the interest in the use of auxetic
materials is growing, supported in observations of their unique

properties like Poisson's ratio sign dependent on the load
direction, cf. [20]. In the domain of structural dynamics, the
most interesting features of periodic structures refer to their
wave filtering and vibration attenuation properties [6,8,25].
Most of investigation effort is directed towards analysis of
wave propagation in periodic 1-D and 2-D structures [23].
Usually, the investigation is limited to beams of infinite length,
which allows analysis of a single periodicity cell and employ-
ing the Bloch–Floquet theorem [24].

The methods applied in analysis of such structures can
generally be divided into two groups: discretization and
averaging methods. The direct application of discretization
methods leads to models of large number of degrees of
freedom. Such approach, supported with optimization algo-
rithms, was successfully employed in in order to maximize the
frequency band gaps in finite 1-D and 2-D structures [9,16]. In
[26] high frequency dynamics of an aluminium Timoshenko
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a b s t r a c t

Considered are free and forced transverse vibrations of slender periodic beams of finite

length. It is assumed that the vibration amplitude is of the order of cross-section dimen-

sions, still much smaller than the beam length. An averaged non-asymptotic model is

proposed as a tool in analysis. The description is based on the tolerance approach to

averaging of differential operators, using the concept of weakly slowly-varying function.

The resulting differential equations with constant coefficients involve the effect of period-

icity cell length. The model is verified by comparison of linear frequencies and mode shapes

with Finite Element Method results, and then applied in analysis of free and forced vibra-

tions of beam with variable cross-section. The method employed in obtaining the solution

involves Galerkin orthogonalization and Runge–Kutta (RKF45) method. The results of non-

linear vibrations analysis are presented by backbone and amplitude-frequency response

curves, time series, Poincare sections and bifurcation diagrams.
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periodic beam is investigated through numerical simulations
and experimental measurements. The source of the beam
periodicity is the presence of a number of appropriately
arranged drill-holes. Between the averaging methods, the
most widespread is asymptotic homogenization [13] which
was, amongst many other works, applied in [7] to estimate
upper and lower bounds for low-order frequencies of compos-
ite periodic beam. In [10] transition from a 3-D elasticity
problem with initial stresses to beam theory is made, making
use of two-scale homogenization. Equivalent representation
of periodically variable cross-section based on simple yet well-
established idea was applied in [25] in comprehensive study of
static and dynamic problems of beams, taking into account the
non-effective transition regions. Analysis of linear eigenfre-
quencies and mode shapes of beams with continuously
varying cross-section was conducted in [18] using the method
of varying amplitudes.

When geometrically nonlinear dynamics problems of
composite structural elements are considered, it is usually
done for layered members [1]. The formerly mentioned
method of varying amplitudes was also applied in [19] to
investigate the effects of weak geometrical and material
nonlinearity on wave dispersion relations for beams with
smoothly variable cross-section. The study was also supported
by experimental results.

The tolerance modelling technique [22] was applied in
analysis of various thermomechanical problems of periodic
and functionally graded structures, such as geometrically
nonlinear static problems of densely ribbed plates [2], linear
dynamics of periodic beams under moving load [15] or heat
transfer problems [17]. The concept of weakly slowly varying
function in the context of averaging differential operators was
introduced in analysis of periodically stiffened shells [21]. In
papers [3,4], a considerably simplified versions of proposed beam
model were described and applied in analysis of uniform
stiffness beams with lumped masses attached. In the previous
studies, the derivation was based on assumption that all the
unknown functions are slowly varying in x, which leads to
differential equations of lower order. Thus, previously proposed
models are valid only in a certain range of frequencies. To be
more precise, they give correct results in the vicinity of frequency
band gaps. Moreover, the present paper delivers the variational
derivation of natural boundary conditions involving nonlinear
terms and rotational inertia. Thus, the described solution
procedure makes it possible to analyse vibrations in the whole
range of frequencies within applied theory of slender beams.

The main of this paper aims are: to obtain an non-
asymptotic averaged model of periodic beam taking into
account moderately large deflections, and to demonstrate the
applicability of proposed approach in analysis of free and forced
vibrations. The paper is organized as follows. Section 2 contains
a brief reminder of general principles and equations of

geometrically nonlinear beam theory with emphasis on the
main problems of application. In Section 3 the fundamental
assumptions of the tolerance approach are introduced, and the
averaged models of beam dynamics are derived. The next
section contains a brief overview of the methodology for
obtaining solutions of the averaged equations. Section 5 is
devoted to analysis of special cases. The considered problem is
stated, then more details corresponding to the solution method
are given. The proposed approach is then justified by compari-
son of results obtained from linear eigenproblem analysis with
those from the full finite element model of the beam. Two last
subsections present the results of free and forced vibration
analysis in the moderately amplitude vibrations range. The
closing remarks and future work are given in Section 6.

2. The governing equations

A fragment of a typical periodic beam is depicted in Fig. 1. In an
orthogonal Cartesian coordinate system Oxyz, the Ox axis
coincides with the axis of the beam, the cross section of the
beam is symmetric with respect to the plane of the load Oxz,
the load acts in the direction of the axis Oz. The problem can be
treated as one-dimensional, so that we define the region
occupied by the beam as V � [0, L], L stands for the beam
length. The beam is made of linearly elastic material of Young
modulus E(x) and mass density r(x), its cross-section char-
acteristics are the area A(x) and moment of inertia J(x). The
beam can bilaterally interact with a periodic viscoelastic
subsoil, the elastic and the damping coefficient of which are
k = k(x) and c = c(x). The beam is assumed to be made of many
repetitive small elements, called periodicity cells, each of
which is defined as D � [�l/2, l/2], where l « L is the length of
the cell and named the mesostructure parameter.

Our considerations are based on the Rayleigh theory of
beams with von Kármán type nonlinearity. We also take into
consideration initial elongation or shortening of the beam axis.
For the subsoil we assume the Kelvin–Voight model [14]. The
effect of axial inertia is neglected, for we are interested in the
transverse vibrations only. Let w = w(x, t) be the transverse
deflection, u0 = u0(x, t) the longitudinal displacement, EA = E(x)
A(x) and EJ = E(x)J(x) tensile and flexural stiffness, m = r(x)A(x)
and W = r(x)J(x) mass and rotational moment of inertia per unit
length and q = q(x, t) the transverse load. Let @k = @k/@xk be the
kth derivative of a function with respect to the x coordinate and
@F � F, overdot stands for the derivative with respect to time.

The fundamental Euler–Bernoulli theory assumption is
that the lines perpendicular to the beam axis stay straight and
perpendicular to this axis after the deformation. There are
three main sources of nonlinearity in structural members
behaviour: (1) nonlinear stress–strain relation of the material,
(2) nonlinear curvature, (3) the so-called von Kármán nonline-

Fig. 1 – A fragment of periodically inhomogeneous beam, D(x) – a periodicity cell.
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