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ARTICLE INFO ABSTRACT
Keywords: In this study, v-Support Vector Machine (v-SVM) is used to explore strategies for the data-driven CHF look-up
Critical heat flux table construction, based on sparingly distributed experimental data points. The CHF look-up table of
Machine learning Groeneveld et al. (2007) was used as the reference CHF data bank. In the data bank, the subcooled flow

Support vector machine

Look ol (Xe < 0) is selected to focus on the PWR steady-state condition. The results demonstrate that v-SVM trained
ook-up table

with well distributed training data in the parametric space of interest (pressure and mass flux) can give an
acceptable level of CHF prediction accuracy. Procurement of training data points that can imply the parametric
behavior of CHF with respect to pressure and mass flux is the key to achieving a high level of CHF prediction
accuracy. For the pressure-variant CHF behavior, data in the proximity of the inflection point significantly
contribute to the prediction accuracy. Hence, physics-informed training data preparation with knowledge of CHF
inflection points could enhance the prediction accuracy. The linearizability of CHF with respect to pressure and
mass flux determines the level of prediction accuracy, in the absence of a good spread of training data points.
CHF extrapolation to a higher pressure with data points collected at low pressure can be effectively achieved by
v-SVM if a few data points are available in the high pressure. This speaks to a possibility of strategically in-
tegrating high pressure and low pressure experiments, with a reduced experimental cost associated with the high
pressure testing. The presented methodology provides engineering strategies to support the look-up table con-
struction for advanced cladding materials.
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1. Introduction

Critical Heat Flux (CHF) limits the maximum attainable heat flux of
fuel pins in the pressurized water reactor (PWR), thereby determining
the achievable thermal power. As a way to ensure a sufficient margin to
CHF, nuclear power regulation enforces the compliance with Departure
from Nucleate Boiling Ratio (DNBR) - the ratio of the heat flux needed
to cause departure from nucleate boiling to the actual local heat flux.
CHF is a complex phenomenon affected various parameters including
flow rate, pressure, quality, geometry and surface characteristics
(Bruder et al., 2017). Because of its importance and phenomenological
complexities, the CHF phenomena have received considerable attention
thus far, with myriads of modeling framework, approach, and per-
spectives. Today, empirical correlations or tabulated look-up tables
based on extensive experiments covering wide ranges of operating
conditions are used in nuclear reactor thermal hydraulics codes such as
RELAPS5 3D, COBRA-TF, and TRACE.

The high costs associated with the CHF investigation conducted in a
manner compatible with the current correlations or look-up table de-
velopments prevent many experimental CHF studies from being applied
for the aforementioned thermal hydraulics system codes. This has be-
come even more evident recently with the developments of Accident
Tolerant Fuel (ATF) cladding (Brown et al., 2013, 2015; Carmack et al.,
2015; Lee and Kazimi, 2015; Lee et al., 2015a,b, 2017, 2016a,b, 2013;
Terrani et al., 2014a,b). Past studies that demonstrated the influence of
the material surfaces on boiling (Seo et al., 2015, 2016) make the nu-
clear community believe that CHF of ATF clad fuels is likely to be
different from that of Zirconium-based alloys, or steel materials used for
the W-3 correlation or look-up table (Bruder et al., 2017). The high cost
associated with procuring CHF measurements covering a wide range of
operating conditions motivates us to explore an enabling technology to
effectively interpolate and extrapolate experimentally measured points.
With enabling inter/extrapolation techniques, we can establish a
modeling foundation upon which construction of look-up tables can be
expedited to support the application of experimentally measured CHF
points for the system codes.

It is noteworthy that the parametric trends of CHF with respect to
dominant operating conditions — pressure (P), equilibrium quality (X.),
and mass flux (G) - are relatively simple, despite of the complexity of
the phenomena. CHF monotonically decreases, and increases with in-
creasing X., and G, respectively (Fig. 1(a), and (b)). The pressure sen-
sitivity of CHF can be parameterized by a simple function that gives a
local maximum value at a certain pressure (Fig. 1(c)).

The simple parametric trends of CHF respect to the three major flow
conditions (X., G, and P) imply that CHF look up tables can be effec-
tively obtained if an enabling fitting method is applied with a suitable
set of data.

2. v-SVM supported CHF prediction with sparingly distributed
CHF data points

In contrast to Artificial Neural Network (ANN), Support Vector
Machine (SVM) can automatically select its model size and obtain the
globally optimal and unique solution. In Cai’s study (Cai, 2012a,b),
€-SVM was employed to correlate the geometrical parameters of tubes
and the thermal properties of liquids with Kutateladze number. Its
comparison with experimental results demonstrated that e-SVM gives
better prediction accuracy than various ANNs. A few past studies in-
vestigated CHF prediction using v-SVM (Jiang et al., 2013; Jiang and
Zhao, 2013a,b). Jiang et al. (2013) demonstrated that CHF behavior
with respect to the aforementioned flow parameters (G, P, and X.) can
be predicted by v-SVM. The following investigation by Jiang and Zhao
(2013a,b) improved its model by finding optimal coefficients of v-SVM,
with which dryout prediction was conducted using the CHF look-up
tables of Groeneveld et al. (2007) and Kim et al. (2000). These in-
vestigations focused on how v-SVM models CHF with more than three
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Fig. 1. The parametric trends of CHF in subcooled flow with respect to (a)
equilibrium quality (X.), (b) mass flux (G), and (c) pressure (P).

parameters, and validated v-SVM has superiority of CHF prediction over
other machine learning techniques, such as radial basis function net-
work (Jiang et al., 2013). It is noteworthy that in their preparation of
training datasets (Jiang et al., 2013; Jiang and Zhao, 2013a,b), 75% of
the total CHF datasets were used as training datasets with the sub-
tractive clustering scheme. That is, 25% of the CHF dataset are used for
the performance evaluation. In light of this, the applied SVM was es-
sentially used as an enabling interpolation method for the closely dis-
tributed CHF data points.

In reality, the value of SVM application for CHF prediction would be
best realized if it successfully captures CHF behavior by interpolating
sparingly distributed experimental data. This would imply that the CHF
look-up table for various cladding surfaces under investigation, in-
cluding ATF candidates, can be prepared with a limited number of data
points, thereby expediting the system-level simulation of ATF clad
fuels. In addition, SVM-supported extrapolation of CHF data beyond the
experimental conditions could support the cost reduction of experi-
ments as it may alleviate pressure, heater, and pump requirements.
Therefore, the objective of this study is to explore strategies for the
data-driven CHF look-up table construction with v-SVM, based on
sparingly distributed experimental data points. In addition, its potential
application for the pressure extrapolation for CHF is investigated in this
paper.

This study uses the CHF look-up table of Groeneveld et al. (2007) as
the reference CHF data bank. The Groeneveld et al. (2007) look-up
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